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Preface

This is a book about numerically solving partial differential equations occurring
in technical and physical contexts and we (the authors) have set ourselves a more
ambitious target than to just talk about the numerics. Our aim is to show the place
of numerical solutions in the general modeling process and this must inevitably
lead to considerations about modeling itself. Partial differential equations usually
are a consequence of applying first principles to a technical or physical problem
at hand. That means, that most of the time the physics also have to be taken into
account especially for validation of the numerical solution obtained.

This book in other words is especially aimed at engineers and scientists who have
’real world’ problems and it will concern itself less with pesky mathematical detail.
For the interested reader though, we have included sections on mathematical the-
ory to provide the necessary mathematical background. Since this treatment had
to be on the superficial side we have provided further reference to the literature
where necessary.

Delft, June 2005
Jos van Kan
Guus Segal
Fred Vermolen

Note to the first edition improvements

In this improved first edition exercises and theory are more separately presented.
Furthermore, some parts, such as the parts on boundary fitted coordinates, on
coordinate transformation, the treatment of essential boundary conditions for FEM
and the solution of non-linear systems of equations, have been rewritten to make
them easier to understand.
Newmark-type solvers for the wave equation have been added.

Delft, April 2008
Jos van Kan
Guus Segal
Fred Vermolen

Note to the second edition improvements

In this improved second edition the treatment of boundary conditions for all types
of discretization methods has been extended. Periodical boundary conditions have
been included. Furthermore,the description of the FEM has been simplified.

Delft, August 2014
Guus Segal
Fred Vermolen
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Chapter 1

Review of some basic
mathematical concepts

1.1 Preliminaries

In this chapter we take a bird’s eye view of the contents of the book. Furthermore
we establish a physical interpretation of certain mathematical notions, operators
and theorems. As a first application we formulate a general conservation law,
since conservation laws are the back bone of physical modeling. Finally we treat
some mathematical theorems, that will be used in the remainder of this book.

1.2 Global contents of the book

We first take a look at second order partial differential equations and their relation
with various physical problems. Then we look at numerical methods for those
equations. First we look at finite difference methods, of respectable age but still
very much in use. Subsequently we take on finite volume methods, a typical engi-
neers option, constructed for conservation laws. Finally we turn to finite element
methods (FEM) which have gained tremendous popularity over the last decades.
Before we can move to FEM, however, we have to delve a bit into minimization
problems to provide a proper background. We shall show, that FEM may be con-
sidered as a special case of Ritz’s method, a particular way of obtaining an approx-
imate solution to a minimization problem. We shall establish a relation between
minimization problems and partial differential equations. But not all PDEs can be
formulated as a minimization problem and we shall consider a generalization that
will enable us to apply the FEM also to those problems.

These methods generally leave us with a large set of linear or non-linear equations
and we consider ways of how to solve them. In particular we shall pay some
attention to efficient methods that are relatively young, like preconditioned Krylov
space methods and multi-grid methods. The treatment can be only cursory but
further references will be provided.

We also pay some attention to special methods for specific problems like heat and
wave equations. Finally we consider transport equations. They do not fall within
the previous context, being only first order, yet they are very important and de-
serve a chapter of their own. The last chapter will be dedicated to miscellaneous
problems that fall outside the classification so far.
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Figure 1.1: 1-dimensional heat flow.

1.3 Building blocks for mathematical modeling

Several mathematical concepts used in modeling are directly derived from a phys-
ical context. We shall consider a few of those and see how they can be used to
formulate a fundamental mathematical model: conservation.

1.3.1 Gradient of a scalar

Given a scalar function, u, of two variables, differentiable with respect to both
variables, then the gradient is defined as

grad u =

(
∂u
∂x
∂u
∂y

)
. (1.3.1)

Instead of the notation grad u also ∇u (pronounce: nabla u) is used. To get to the
core of what a gradient really is, think of temperature. If you have a temperature
difference between two points, then you get a flow of heat between those points
that only will stop when the temperature difference has been annihilated. If the
difference is bigger, the flow will be larger. If the points are closer together the flow
will be larger. The simplest one dimensional model to reflect this is the following
linear model. Let q be the generated flow, directly proportional to the temperature
difference ΔT and inversely proportional to the distance Δx. This leads to:

q = −λ
ΔT

Δx
, (1.3.2)

where λ is a material constant, the heat conduction coefficient. The minus sign re-
flects the facts that

1. heat flows from high to low temperatures;

2. physicists hate negative constants.

In a continuous temperature field T(x) we may take limits and obtain a flow that
is derived from (driven by) the temperature:

q = −λ
dT

dx
. (1.3.3)

How is this in more than one dimension? Suppose we have a two-dimensional
temperature field T(x, y)which we can represent nicely by considering the contour
lines which for temperature are called isotherms, lines that connect points of equal
temperature.
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Figure 1.2: Isotherms.

Since there cannot be heat flow between points of equal temperature, the heat flow
must be orthogonal to the contour lines at every point. Two vectors v and w are
orthogonal if their inner product (v, w) vanishes. In other words: let x(s), y(s) be

a parameterization of a contour line and let

(
q1

q2

)
be the components of the heat

flow field. We then have:

q1
dx

ds
+ q2

dy

ds
= 0, (1.3.4)

at every point x(s), y(s) of the isotherm, for all isotherms. Let us substitute the
equation of an isotherm into the temperature field: T(x(s), y(s)). Doing this makes
T a function of s only, which is constant because we are on an isotherm. In other
words along an isotherm:

dT

ds
=

∂T

∂x

dx

ds
+

∂T

∂y

dy

ds
= 0. (1.3.5)

If we compare Equation (1.3.4) with (1.3.5) we see that these can only be satisfied
if

q = −λ grad T. (1.3.6)

For three dimensions you can tell basically the same story that also ends in Equa-
tion (1.3.6). This is known as Fourier’s law and it is at the core of the theory of heat
conduction.

Exercise 1.3.1 (Darcy’s Law). In ground water flow the velocities are very small, a few
centimeters per day. This makes ground water flow basically a hydrostatic problem, in
which the flow is driven by differences in hydrostatic pressure. This hydrostatic pressure
depends linearly on the height of the ground water level h. So how does the flow q depend
on h? �

Exercise 1.3.2 (Fick’s Law) In diffusion the flow of matter, q, is driven by differences in
concentration c. Express q in c. �

Scalar fields like T, h and c that drive a gradient flow field, q, are called potentials.
Not all flow fields are generated by the gradient of a potential. But those that are,
are called solenoidal or irrotational.
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Figure 1.3: Square volume in river.

Exercise 1.3.3 Let C be a closed contour in the x-y-plane and q a solenoidal vector field.
Show that

∫
C q · ds = 0. �

1.3.2 Directional derivative

In the previous paragraph we saw, how the temperature, T, changes along a curve

x(s), y(s). The actual value of dT
ds depends on the parameterization. A natural

parameterization is the arc length of the curve.

Note, that in that case ( dx
ds )

2 + ( dy
ds )

2 = 1. This forms the basis of the following
definition:

Definition 1.3.1 Let n be a unit vector, then the directional derivative of T in the direction
of n is given by

∂T

∂n
=

∂T

∂x
n1 +

∂T

∂y
n2 = (grad T, n) = (n · ∇)T.

Exercise 1.3.4 Compute the directional derivative of z = x2 + y3 in (1, 1) in the direction

(1,−1). (Answer: − 1
2

√
2). �

Exercise 1.3.5 For what value of n is the directional derivative precisely ∂T
∂x ? �

1.3.3 Divergence of a vector field

The mathematical definition of divergence is equally uninspiring. Given a contin-

uously differentiable vector field,

(
v1

v2

)
, the divergence of v is defined by:

div v =
∂v1

∂x
+

∂v2

∂y
. (1.3.7)

For R3 you have the obvious generalization and there is also a nabla notation:
div v = ∇ · v. You will appreciate the correspondence of a genuine inner product
of two vectors and the inner product of the ”nabla vector” and a vector field. Take
care, however. In a genuine inner product you can change the order of the vectors,
in the divergence you cannot.

What is the physical meaning of divergence? You could think of a vector field as a
river: at any place in the river the water has a certain velocity with direction and
magnitude. Now consider a fixed rectangular volume in the river (see Figure 1.3).

Water is flowing in through the left and bottom wall and flowing out through
the right and top wall. How much is flowing in through the left wall? If you think
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about it, you will notice that the y−component of the velocity gives no contribution
to the inflow, because that is parallel to the left wall. So the inflow through the left
wall is equal to v1LΔy, the outflow through the right wall v1RΔy. By the same
reasoning the inflow through the bottom equals v2BΔx, the outflow through the
top equals v2TΔx. What’s left behind? If the net outflow is larger than the net
inflow we are losing matter in the volume, if on the other hand the net inflow is
larger we’re gaining. The net outflow out of control volume ΔΩ, in Figure 1.3 is
given by

Δφ(a, b) = v1(a +
Δx

2
, b)Δy − v1(a − Δx

2
, b)Δy + v2(a, b +

Δy

2
)Δx − v2(a, b − Δy

2
)Δx

= ΔxΔy(
v1(a + Δx

2 , b)− v1(a − Δx
2 , b)

Δx
+

v2(a, b + Δy
2 )− v2(a, b − Δy

2 )

Δx
)

(1.3.8)

= ΔxΔy(
∂v1

∂x
(ξ, b) +

∂v2

∂x
(a, η)),

for a ξ ∈ (a − Δx
2 , a + Δx

2 ), η ∈ (b − Δy
2 , b + Δy

2 ) from the Mean Value Theorem and
continuity of the partial derivatives. This implies

lim
(Δx,Δy)→(0.0)

Δφ(a, b)

ΔxΔy
= div v(a, b). (1.3.9)

From this formula, we see that div v(a, b) is the outflow density (outflow per unit
area) at point (a, b). Integration of the outflow density over an entire domain gives
the total outflow. Since the total outflow can also be computed from evaluation
of the flux over its boundary, we obtain a very important relation between the
integral of the divergence of a vector-field over the domain and the integral of
the flux over its boundary. This relation is formulated in terms of the Divergence
Theorem, which we shall state in the next subsection.

Exercise 1.3.6 Explain that for an incompressible flow field, u, we must have div u = 0.
�

Exercise 1.3.7 Derive in the same way as above that divergence is an outflow density in
R3. �

1.3.4 Gauss’ divergence theorem

In the previous section, we informally derived the Divergence Theorem, which
was initially proposed by Gauss. In words: the outflow density integrated over an
arbitrary volume gives the total outflow out of this volume. But this is mathemat-
ics, so we have to be more precise.

Theorem 1.3.1 Gauss’ divergence theorem.
Let Ω be a bounded domain in R2 (R3) with piecewise smooth boundary Γ. Let n be the
outward normal and v a continuously differentiable vector field. Then∫

Ω

div v dΩ =
∫
Γ

v · n dΓ. (1.3.10)

�



6 Numerical methods in scientific computing

Remark

1. The expression v · n is the outward normal component of the vector-field, v,
with respect to the boundary. If this quantity is positive you have outflow,
otherwise inflow.

2. Any good book on multivariate analysis will have a proper proof of Gauss’
theorem. (See for instance [2] or [35]). A good insight will be obtained how-
ever, by subdividing the region Ω in small rectangles and using (1.3.8). Note
in particular, that the common side (plane in R

3) of two neighboring volumes
cancel: what flows out of one flows into the other. The proof is finalized by
taking a limit Δx, Δy → 0 (contraction) in the Riemann sum.

The Divergence theorem has many important implications and these implications
are used frequently in various numerical methods, such as the finite element method.
First, one can use the component-wise product rule for differentiation to arrive at
the following theorem

Theorem 1.3.2 For a continuously differentiable scalar field, c, and vector field, u, we
have

div (cu) = grad c · u + c div u. (1.3.11)

Exercise 1.3.8 Prove Theorem 1.3.2.

As a result of this assertion, one can prove the following theorem.

Theorem 1.3.3 Green’s Theorem
For a sufficiently smooth c, u, we have∫

Ω

cdiv u dΩ = −
∫
Ω

(grad c) · udΩ +
∮
Γ

cu · n dΓ. (1.3.12)

Exercise 1.3.9 Prove Theorem 1.3.3.

By the use of Theorem 1.3.3, the following assertion can be demonstrated:

Theorem 1.3.4 Partial integration in 2 D
For sufficiently smooth scalar functions φ and ψ, we have;∫

Ω

φ
∂ψ

∂x
dΩ = −

∫
Ω

∂φ

∂x
ψ dΩ +

∮
Γ

φψn1dΓ, (1.3.13)

and ∫
Ω

φ
∂ψ

∂y
dΩ = −

∫
Ω

∂φ

∂y
ψ dΩ +

∮
Γ

φψn2dΓ. (1.3.14)

Exercise 1.3.10 Prove Theorem 1.3.4.
Hint: choose an appropriate vector field, u, in the previous exercise. �
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1.3.5 Conservation laws

Let us consider some flow field, u, in a volume V with boundary Γ. If the net inflow
into this volume is positive something in this volume must increase (whatever it is).
That is the basic form of a conservation law:

∂

∂t

∫
V

S dV = −
∫
Γ

u · n dΓ +
∫
V

f (t, x) dV. (1.3.15)

The term f (t, x) is a production density, it tells how much S is produced any time,
any place within V. The boundary integral describes the net inflow into V (mark
the minus sign). The flow field, u, is also called the flux vector of the model. S just
like f has the dimension of a density. Since Equation (1.3.15) has to hold for every
conceivable volume in the flow field we may formulate a point wise conservation
law as follows. First we apply Gauss’ Theorem 1.3.10 to Equation (1.3.15) to obtain

∂

∂t

∫
V

S dV = −
∫
V

div u dV +
∫
V

f (t, x) dV. (1.3.16)

Subsequently we invoke the mean-value theorem of integral calculus for each in-
tegral separately, assuming all integrands are continuous:

∂S

∂t
(x1) = −div u(x2) + f (t, x3). (1.3.17)

Observe that we have divided out a factor
∫

V dV and that x1, x2 and x3 all lie within
V. Finally we let V contract to a single point x to obtain a point wise conservation
law in the form of a PDE:

∂S

∂t
= −div u + f (t, x). (1.3.18)

This is all rather abstract, so let us look at an example.

1.3.5.1 Example: Heat flow

In heat flow, conservation law (1.3.18) takes the form

∂h

∂t
= −div q + f (t, x), (1.3.19)

in which h is the heat density, q the heat flux vector and f the production density.
Remember, that all quantities in such a point wise conservation law are densities.
The heat density, h, stored in a material can be related to the materials (absolute)
temperature T:

h = ρcT, (1.3.20)

in which ρ is the density and c the heat capacity of the material. These material
properties have to be measured. As we already saw in Section 1.3.1 the heat flow,
q, is driven by the temperature gradient: q = −λ ∇T. This enables us to formulate
everything in terms of temperature. Substituting this all we get:

∂ρcT

∂t
= div λ grad T + f (t, x). (1.3.21)

If ρ, c are constant throughout the material and if there is no internal heat pro-
duction this transforms into the celebrated heat conduction equation:

∂T

∂t
= div (kgrad T), (1.3.22)

with k = λ/(ρc).
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1.4 Minimization

Another way of deriving models is by looking at the potential energy. This is most
often used in mechanical problems, but can also be used in different contexts. An
equilibrium state can be found by minimizing that potential energy. We also meet
minimization problems in optics (optical length) and economics (cost).

1.4.1 Elastic string

As an example consider an elastic string fixed in (0, 0) and (0, 1), see Figure 1.4.
Without load, the string is undeformed: u(x) = 0. When we apply a load f the

string deforms. What is the potential energy of the deformed string? First of all,
there is an elastic energy proportional to the increase in length: ΔPe = kΔL. Over
a small interval Δx this increase amounts to

ΔL =
√

Δx2 + Δu2 − Δx. (1.4.1)

10

u

Figure 1.4: Deformed elastic string.

When the inclination Δu/Δx is small (this is true in a realistic problem), this is
approximately equal to

ΔL = Δx(1 + 1
2 (

Δu

Δx
)2)− Δx, (1.4.2)

= 1
2

(
Δu

Δx

)2

Δx. (1.4.3)

The work done by the load f per fragment Δx equals ΔW = u f Δx, assuming
we take the positive u–axis pointing down. The potential energy per fragment
Δx then is given by ΔPe − ΔW and the potential energy over the whole string is
obtained by integrating over the whole interval (0, 1):

P = Pe − W =

1∫
0

( 1
2 k

(
du

dx

)2

− u f ) dx. (1.4.4)

So any (sufficiently smooth) function u satisfying u(0) = 0 and u(1) = 0 yields
a potential energy. The solution to the mechanical problem is that function u for
which the potential energy P is minimal. In Chapter 5 we shall see how to deal
with this.

Exercise 1.4.1 Show by Taylor’s theorem that
√

1 + x = 1 + 1
2 x +O(x2). �



1. Mathematical concepts 9

1.5 Preliminaries from linear algebra

Let x, y be vectors in Cn. In this chapter we use the inner product (x, y) defined by

(x, y) = ∑
j

xjȳj = xT ȳ = (y, y), (1.5.1)

where ȳ is the conjugate complex of y. Further ||x|| = √
(x, x).

Definition 1.5.1 Let A be a n × n matrix. Let λ be a complex number and v a complex
vector such that

A v = λ v, v �= 0, (1.5.2)

then λ is called an eigenvalue and v an eigenvector of A.

Theorem 1.5.1 All eigenvalues of a real symmetrical matrix are real, and eigenvectors
corresponding to different eigenvalues are orthogonal.

Proof Multiplication of Equation (1.5.2) by the vector v̄T :

v̄T Av = λv̄Tv. (1.5.3)

v̄T Av is real, since

(v̄T Av)
T

= v̄T ĀTv = v̄T Av A symmetrical real. (1.5.4)

In the same way v̄Tv is real, hence λ is real.
Further (vi, Avj) = (Avi, vi), where vi and vj are eigenvectors associated with
eigenvalues λi, λj (λi �= λj). This implies λj(vi, vj) = λi(v,vj). Since λi �= λj it
immediately follows that (vi, vj) = 0. �

Definition 1.5.2 A matrix A is called skewed symmetric if AT = −A.

Theorem 1.5.2 All eigenvalues of a real skewed symmetrical matrix are purely imaginary.

Exercise 1.5.1 Prove Theorem (1.5.2) analogously to the proof of Theorem (1.5.1). �

Definition 1.5.3 The Rayleigh quotient, R(A, x), of a symmetrical matrix A is given by:

R(A, x) =
(x, Ax)

(x, x)
. (1.5.5)

Theorem 1.5.3 If x is an eigenvector of A, then R is equal to the corresponding eigen-
value.

Proof
Let λi be an eigenvalue of A, then

Avi = λivi (1.5.6)

R(A, vi) =
(v, Av)

(v, v)
= λi. (1.5.7)

�

Theorem 1.5.4 For the Rayleigh quotient, R(A, x), of a symmetrical matrix A we have

λ1 ≤ R(A, x) ≤ λn ∀x, (1.5.8)

with λ1 the smallest and λn the largest eigenvalue of A.
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Exercise 1.5.2 Prove Theorem (1.5.4).
Hint: use the fact that the eigenvectors of a symmetric matrix form an orthonormal basis
of the space Rn and expand the vector x as a linear combination of these eigenvectors. �

Definition 1.5.4 A matrix A is called positive if (x, Ax) ≥ 0, ∀x ∈ Rn.

Definition 1.5.5 A matrix A is called positive definite if ∃ α > 0 such that
(x, Ax) ≥ α||x||2, ∀x ∈ Rn.

Theorem 1.5.5

• If A is positive, then its eigenvalues are non-negative.

• If A is positive definite, then its eigenvalues are positive.

Theorem 1.5.6 Let A be symmetric.

• If the eigenvalues of A are non-negative, then A is positive.

• If the eigenvalues of A are positive, then A is positive definite.

Proof of Theorem 1.5.5

• Let (λ, v) be an eigenpair of A, then by definition (v, Av) = λ(v, v) ≥ 0.
Since (v, v) > 0, we have λ ≥ 0.

• Let (λ, v) be an eigenpair of A, and let A be positive definite, then ∃ α > 0
such that (v, Av) = λ(v, v) ≥ α(v, v) > 0.
Since (v, v) > 0, this immediately implies λ > 0.

�

Proof of Theorem 1.5.6

• We expand any vector x as a linear combination of the eigenvectors of A.
Symmetry of A enables this procedure. Then

x = ∑
j

cjvj. (1.5.9)

This implies with orthogonality of the eigenvectors

||x||2 = (x, x) = ∑
j

c2
j . (1.5.10)

Hence, we get similarly

(x, Ax) = (∑
j

cjvj, ∑
k

λkckvk) = ∑
j

c2
j λj. (1.5.11)

If λj ≥ 0, ∀j, then this implies

(x, Ax) ≥ 0, (1.5.12)

which proves the first assertion.

• The second assertion follows from

(x, Ax) = ∑
j

c2
j λj ≥ ∑

j

c2
j λmin, (1.5.13)

where 0 < λmin = min
j

λj.

Since (x, x) = ∑j c2
j , we get

(x, Ax) ≥ λmin(x, x), λmin > 0. (1.5.14)

Hence A is positive definite.
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�

As a consequence the Rayleigh quotient of a positive matrix is non-negative, whereas
the Rayleigh quotient of a positive definite matrix is positive.

The following theorem can be of great help in estimating bounds for eigenvalues
of matrices. This is for example useful in stability analysis.

Theorem 1.5.7 (Gershgorin)
For all eigenvalues λ of the matrix A holds:

|λ − akk| ≤
N

∑
i=1i �=k

|aki|. (1.5.15)

Remark:
Eigenvalues may be complex valued in general and for complex eigenvalues λ =

μ + iν, the absolute value is the modulus: |λ| = √
μ2 + ν2. So the eigenvalues are

located within a circle in the complex plane and that is the reason why the theorem
is also often referred to as Gershgorin’s circle theorem. But for symmetric A, the
eigenvalues of A are real-valued.

Proof
Let λ be an eigenvalue of the eigenvalue problem with corresponding eigenvector,
v, then, Av = λv, and for each row, p, this gives

∑
i

apivi = λvp, p = 1, . . . , N. (1.5.16)

Let vk be the component of v with the largest modulus. For this index k we have

λ − akk = ∑
i i �=k

aki
vi

vk
, (1.5.17)

and because |vi/vk| ≤ 1, we get

|λ − akk| ≤ ∑
i i �=k

|aki|. (1.5.18)

This proves the theorem. �

Definition 1.5.6 A matrix, A, is called a band-matrix if all elements, aij, outside a certain
band are equal to zero. In formula: aij = 0 if i − j > b1 or j − i > b2.
The bandwidth of the matrix is in that case b1 + b2 + 1.

1.6 Some theorems used in the mathematical theory

In some of the proofs used in this book we shall use the following theorems.
Let L2(Ω) := {u : Ω → R :

∫
Ω

|u2|dΩ < ∞ }.

Theorem 1.6.1 Inequality of Poincaré (Friedrichs)

Let Ω ⊂ R
m, u ∈ H1(Ω) = {u ∈ L2(Ω)| ∂u

∂x1
, ..., ∂u

∂xm
∈ L2(Ω)} and u|Γ = 0, then

∃ K > 0 such that ∫
Ω

m

∑
i=1

(
∂u

∂xi
)2 dΩ ≥ K

∫
Ω

u2 dΩ. (1.6.1)
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(0,b)

(0,y)

(0,0) (x,0) (a,0)

(x,y)

Ω

Ω1

Figure 1.5: 2-dimensional region.

Proof We shall prove the theorem for m = 2.

By shifting coordinates we may assume that (x, y) ∈ Ω implies x > 0 and
y > 0. The region Ω is enclosed by a rectangle Ω1, given by (a, 0)× (0, b) as in
Figure (1.5). Since u(x, y) ∈ C1(Ω) and u(x, y) = 0 on Γ, we may extend u(x, y)
continuously to the whole domain Ω1 by defining

u(x, y) = 0, (x, y) ∈ Ω1\Ω. (1.6.2)

Let (x1, y1) be an arbitrary point in Ω1. Then

u(x1, y1)− u(0, y1) =

x1∫
0

∂u(x, y1)

∂x
dx, (1.6.3)

u(0, y1) = 0 follows from Figure (1.5). (1.6.4)

According to Cauchy-Schwartz we have:

{
∫
Ω

uv dΩ}2
<

∫
Ω

u2 dΩ

∫
Ω

v2 dΩ. (1.6.5)

Hence

u2(x1, y1) = {
x1∫

0

∂u(x, y1)

∂x
dx}2 ≤ x1

x1∫
0

{∂u(x, y1)

∂x
}2 dx (1.6.6)

≤ a

a∫
0

(
∂u(x, y1)

∂x
)2 dx. (1.6.7)

Integration of Equation (1.6.6) over Ω1 gives∫
Ω1

u2(x, y) dΩ ≤ a2
∫

Ω1

(
∂u

∂x
)2 dΩ ≤ a2

∫
Ω1

(
∂u

∂x
)2 + (

∂u

∂y
)2 dΩ (1.6.8)

This proves the theorem with K = 1/a2. �
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Exercise 1.6.1 Prove Theorem (1.6.1) with K = 1/b2. �

From the proof of Theorem (1.6.1) and Exercise (1.6.1) if follows that K is overesti-
mated by K = max(1/a2,1/b2).
This theorem is used to prove that the Laplace operator is positive definite, when
using Dirichlet or Robin boundary conditions. We will specify these boundary
conditions in Chapter 2.

Definition 1.6.1 A Banach space is a complete vector space defined over the real or com-
plex numbers provided with a norm.

Definition 1.6.2 A Hilbert space is a Banach space provided with an inner product which
defines the norm of the space.

Definition 1.6.3 A bilinear form a(u, v) in V has the following properties

• a(u, v + w) = a(u, v) + a(u, w), ∀u, v, w,∈ V,

• a(λu, v) = λa(u, v), ∀λ ∈ R, ∀u, v ∈ V.

Definition 1.6.4 Let a(., .) be a bilinear form in V, then

• a(., .) is bounded if ∃ C > 0 such that |a(u, v)| ≤ C||u||V ||v||V, ∀u, v ∈ V.

• a(., .) is coercive if ∃ C > 0 such that a(u, u) ≥ C||u||2V, ∀u, v ∈ V.

The next theorem is used in existence and uniqueness proofs.

Theorem 1.6.2 Lax-Milgram
Let V be a Hilbert space and let a(., .) be a coercive and bounded, bilinear form on V.
Further let f ∈ V′, where V′ denotes the set (space) of linear functionals on V, then there
is a unique solution u ∈ V, such that

a(u, v) = f (v), ∀v ∈ V. (1.6.9)

This solution satisfies

||u|| ≤ 1

c
|| f ||V ′ . (1.6.10)

For a proof of this theorem see for example [22].

1.7 Summary of Chapter 1

In this chapter we have seen the importance of conservation in the development
of models and the role the mathematical operators divergence and gradient play in
that development. We have met the famous divergence theorem of Gauss as an
expression of global conservation.

We have looked at various applications deriving from conservation: heat trans-
fer, diffusion and ground water flow. We concluded the chapter with an example
of minimization as an instrument to derive a physical model. Besides that some
standard mathematical theorems have been reviewed.





Chapter 2

A crash course in PDE’s

Objectives

In the previous chapter we looked at PDE’s from the modeling point of view, but
now we shall look at them from a mathematical angle. Apparently you need partial
derivatives and at least two independent variables to speak of a PDE (with fewer
variables you would have an ordinary differential equation), so the simplest case
to consider is a PDE with exactly two independent variables. A second aspect is
the order of the PDE, that is the order of the highest derivative occurring in it. First
order PDE’s are a class of their own: the transport equations. We shall consider
them in Chapter 11. In this chapter we shall take a look at second order PDE’s and
show that (for two independent variables) they can be classified into three types.
We shall provide boundary and initial conditions that are needed to guarantee a
unique solution and we will consider a few properties of the solutions to these
PDE’s. We conclude the chapter with a few examples of second and fourth order
equations that occur in various fields of physics and technology.

2.1 Classification

Consider a second order PDE in two independent variables with constant coeffi-
cients.

a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
+ cu + d = 0. (2.1.1)

By rotating the coordinate system we can make the term with the mixed second
derivative vanish. This is the basis of the classification. To carry out this rotation,
we keep in mind that

(
∂

∂x
,

∂

∂y
)A

(
∂u
∂x
∂u
∂y

)
= a11

∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
, (2.1.2)

where A =

(
a11 a12

a12 a22

)
. Since A is symmetric, we can factorize A into A = QΛQT,

where Λ = diag (α11, α22), in which α11 and α22 are eigenvalues of A. The columns
of Q are the normalized (with length one) eigenvectors of A. Note that QT = Q−1
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due to symmetry of A. Hence, one obtains from equation (2.1.2)

a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
= (

∂

∂x
,

∂

∂y
)QΛQT

(
∂u
∂x
∂u
∂y

)
=

(
∂

∂ξ
,

∂

∂η
)Λ

(
∂u
∂ξ
∂u
∂η

)
= α11

∂2u

∂ξ2
+ α22

∂2u

∂η2
.

(2.1.3)

The resulting equation will look like:

α11
∂2u

∂ξ2
+ α22

∂2u

∂η2
+ β1

∂u

∂ξ
+ β2

∂u

∂η
+ cu + d = 0. (2.1.4)

Exercise 2.1.1 Show that a2
12 − a11a22 < 0, a2

12 − a11a22 = 0 and a2
12 − a11a22 > 0,

respectively correspond to α11α22 > 0, α11α22 = 0 and α11α22 < 0 (these cases correspond
to the situations in which the eigenvalues of A have the same sign, one of the eigenvalues
of A is zero and opposite signs of the eigenvalues of A respectively). �

There are three possibilities:

1. α11α22 > 0. (I.e. both coefficients have the same sign) The equation is called
elliptic. An example of this case is Poisson’s equation

∂2u

∂x2
+

∂2u

∂y2
= f . (2.1.5)

2. α11α22 < 0. (I.e. both coefficients have opposite sign) The equation is called
hyperbolic. An example of this case is the wave equation

∂2u

∂x2
− ∂2u

∂y2
= 0. (2.1.6)

3. α11α22 = 0. (I.e. either coefficient vanishes). The equation is called parabolic.
An example is the heat equation in one space dimension:

∂u

∂t
=

∂2u

∂x2
. (2.1.7)

Exercise 2.1.2 Let D = a11a22 − a2
12. Show that the condition for hyperbolic, parabolic

or elliptic in the original coefficients aij is given by D < 0, D = 0 and D > 0 respectively.
Use the result of Exercise 2.1.1. �

For the classification only the second order part of the PDE is important. The three
different types have very different physical and mathematical properties. To begin
with, elliptic equations are time-independent and often describe an equilibrium.
Parabolic and hyperbolic equations are time-dependent: they describe the evolu-
tion in time or transient behavior of a process. The difference in nature between
parabolic and hyperbolic equations is that the first class describes an evolution
towards an equilibrium, whereas the second class mimics wave phenomena.

This classification strictly spoken holds only for equations with constant coeffi-
cients. For equations with varying coefficients this classification only holds locally.
If the coefficients depend on the solution itself the type of equation may depend
on the solution itself.
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2.1.1 Three or more independent variables

In this section, we consider a generalization of the simple classification. The gen-
eral second order part of a quasi-linear PDE in N > 2 independent variables is
given by:

N

∑
i=1

N

∑
j=1

aij
∂2u

∂xi∂xj
. (2.1.8)

aij = aji and in a way similar to that in the previous section one may remove the
mixed derivatives. This leads to:

N

∑
i=1

αii
∂2u

∂ξ2
i

. (2.1.9)

We treat the following cases in this book:

1. All αii have the same sign. In this case all independent variables ξi are space
variables. The equation is called elliptic. Example: 3D Laplacian

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0. (2.1.10)

2. Exactly one αii, say α11 has different sign from the rest. In this case ξ1 is a time
variable, all other ξi are space variables. The equation is called hyperbolic.
Example: 3D Wave equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
. (2.1.11)

3. Exactly one αii vanishes, say α11. Then ξ1 is a time variable and the equation
is called parabolic. Example: 3D Heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
. (2.1.12)

Exercise 2.1.3 If A is a symmetric n × n matrix there exists a real unitary matrix C such
that CT AC = Λ. Λ is a diagonal matrix containing the eigenvalues of A on the diagonal.
Show that the substitution ξ = CTx eliminates the mixed derivatives in the differential
operator div A grad u. �

2.2 Boundary and initial conditions

To ensure a unique solution to our PDE we need to prescribe appropriate boundary
conditions and in time-dependent problems we need initial conditions too. We will
just consider here second order PDE’s because the considerations for first order
PDE’s are very different and will be considered in Chapter 11.

2.2.1 Boundary conditions

Consider the bounded region in R2, Ω with boundary Γ in Figure 2.1. Let Γ consist
of three disjoint pieces Γ0, Γ1 and Γ2. For an elliptic equation of the form

div k grad u = f , (2.2.1)

with k > 0 ∀x ∈ Ω, the following boundary conditions guarantee a unique solu-
tion:
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0

2

1

Γ

Ω

Γ

Γ

Figure 2.1: The bounded region Ω.

1.
u = g0(x), x ∈ Γ0, (2.2.2)

the Dirichlet boundary condition.

2.

k
∂u

∂n
= g1(x), x ∈ Γ1, (2.2.3)

the Neumann boundary condition.

3.

k
∂u

∂n
+ σu = g2(x), σ ≥ 0, x ∈ Γ2, (2.2.4)

the Robin, radiation, kinetic or mixed boundary condition.

These boundary conditions do not have to occur together, each (but not all) of
Γ0, Γ1 or Γ2 could be empty. Because the pieces are disjoint exactly one boundary
condition occurs on each point of the boundary. There is a small problem if Γ = Γ1

in other words if there is a Neumann boundary condition on all of the boundary.
Physically this may be understood, as that the inflow at each point of the boundary
is prescribed. And since we have an equilibrium the net inflow over the whole
region must be annihilated inside or the net outflow must be produced inside.
This result is stated in mathematical form in the following theorem.

Theorem 2.2.1 If a Neumann boundary condition is given on all of Γ, then the solution u
of Equation (2.2.1) is determined up to an additive constant only. Moreover the following
compatibility condition must be satisfied:∫

Γ

g1 dΓ =
∫
Ω

f dΩ (2.2.5)

�

Exercise 2.2.1 Prove Theorem 2.2.1. Use Gauss’ divergence theorem on the PDE. It is not
necessary to prove the only part. �
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Remarks

1. Only the highest order part of the PDE determines what type of boundary
conditions are needed, so the same set is needed if first and zeroth order
terms are added to Equation (2.2.1).

2. On each part of the boundary precisely one boundary condition applies. (For
second order PDE’s)

3. Boundary conditions involving the flux vector (Neumann, Robin) are also
called natural boundary conditions. (For second order PDE’s) This term will be
explained in Chapter 5.

4. The boundary conditions needed in parabolic and hyperbolic equations are
determined by the spatial part of the equation.

5. If the coefficients of the terms of the highest order are very small compared to
the coefficients of the lower order terms it is to be expected that the nature
of the solution is mostly determined by those lower order terms. Such prob-
lems are called singularly perturbed. An example is the convection dominated
convection-diffusion equation (see Section 3.3).

2.2.2 Initial conditions

Initial conditions only play a role in time-dependent problems, and we can be very
short. If the equation is first order in time, u has to be given on all of Ω at t = t0.

If the equation is second order in time in addition ∂u
∂t has to be given on all of Ω at

t = t0.

Exercise 2.2.2 Consider the transversal vibrations of membrane that is fixed to an iron
ring. These vibrations are described by the wave equation. What is the type of boundary
condition? What initial conditions are needed? �

2.3 Existence and uniqueness of a solution

Physicists and technicians usually consider the mathematical chore of proving ex-
istence and uniqueness of a solution a waste of time. ‘I know the process behaves
in precisely one way’, they will claim and of course they are right in that. What
they do not know is if their mathematical model describes their process with any
accuracy then existence and uniqueness of a solution is an acid test for that. In
ODE’s a practical way to go about this is try and find one. In PDE’s this is not
much of an option, since solutions in closed form are rarely available.

Proving existence and uniqueness is usually a very difficult assignment, but to get
some of the flavor we shall look at a relatively simple example: Poisson’s Equa-
tion (2.1.5). We shall prove that a solution to this equation with Dirichlet boundary
conditions on all of Γ is unique.

2.3.1 The Laplacian operator

The Laplacian operator div grad is such a fundamental operator that it has a spe-
cial symbol in the literature: Δ. So the following notations are equivalent:

∇ · ∇u ≡ div grad u ≡ Δ u ≡ ∂2u

∂x2
+

∂2u

∂y2
. (2.3.1)
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In a technical context div grad is mostly used, in mathematical contexts the other
three.
In a physical context it is clear that if there are no sources, a heat equation in equi-
librium takes its minimum and maximum at the boundary. Mathematically this is
also true as we shall show in the next subsection.

2.3.2 The maximum principle and uniqueness

Solutions to Laplace’s and Poisson’s equation satisfy certain properties with re-
spect to existence, uniqueness and the occurrence of extremal values at the bound-
aries of a bounded domain or in the interior of such a domain. We note that a
continuous function u(x) has an isolated maximum in some point x0 ∈ Ω if there
exists a δ > 0 such that u(x0) > u(x) for ||x − x0|| < δ.

Definition 2.3.1 The Hessian matrix in R2 is defined by

H(x0) =

⎛⎝ ∂2u
∂x2 (x0)

∂2u
∂x∂y(x0)

∂2u
∂y∂x(x0)

∂2u
∂y2 (x0)

⎞⎠ . (2.3.2)

Theorem 2.3.1 If the function u(x) in C2(Ω), i.e. the second order derivatives are con-
tinuous, the Hessian matrix in an isolated maximum must be negative definite.

Proof Consider the 2-D Taylor expansion of u around x0:

u(x) = u(x0) +∇u(x0) · (x − x0) +
1

2
(x − x0, H(x0)(x − x0)) +O(||x − x0||3).

(2.3.3)
Since u has a maximum for x0, the smoothness of u implies ∇u(x0) = 0. When x
approaches x0 the third order error term becomes arbitrarily small. This implies,
with u(x)− u(x0) < 0, that there exists a δ > 0 such that
(x − x0, H(x0)(x − x0)) < 0 for ||x − x0|| < δ and hence H(x0) is negative definite.
�

Exercise 2.3.1 Prove that H(x0) is positive definite if u has a minimum in x0. �

Exercise 2.3.2 Show that if H is positive definite both diagonal elements must be positive.
Hint: Make special choices for u in (u, Hu). �

Next we are going to consider solutions to Laplace’s equation, −Δu = 0.

Definition 2.3.2 A function satisfying Laplace’s equation −Δu = 0 in Ω is called har-
monic in Ω.

From Exercise 2.3.2 it is clear that uxx(x0) and uyy(x0) are negative if u(x) has an
isolated maximum in x0. This suggests the following theorem

Theorem 2.3.2 (Strong maximum principle) Let Ω be an open bounded domain with
boundary Γ and closure Ω, that is Ω = Ω ∪ Γ. Suppose u ∈ C2(Ω) ∩ C(Ω) is har-
monic within Ω.
Then

(i) u takes its maximum at the boundary Γ, hence max
x∈Ω

u = max
x∈Γ

u.

(ii) Furthermore, if Ω is connected and if there is an internal point x0, where u reaches
its maximum (u(x0) = max

x∈Ω

u), then u is constant on Ω,

that is u(x) = u(x0) on Ω.
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This theorem is formulated and proved in Evans [16] among others. To prove the
maximum principle, we shall use the arguments given in Protter and Weinberger
[30]. Theorem 2.3.2 says that the maximum of a harmonic function is always found
on the boundary Γ unless the function is constant. By replacing u by −u, we re-
cover similar assertions as in Theorem 2.3.2 with min replacing max. Before we
prove the theorem we give several consequences of the assertion.

Theorem 2.3.3 Laplace’s equation in Ω with a homogeneous Dirichlet boundary condi-
tion, that is u = 0 on Γ, has only the trivial solution, that is u = 0 in Ω.

Exercise 2.3.3 Prove Theorem 2.3.3. �

Theorem 2.3.4 (uniqueness) Let Ω be a bounded region in R
2 with boundary Γ, and

suppose that u ∈ C2(Ω) ∩ C(Ω) satisfies

−Δu = f (x, y), (x, y) ∈ Ω, (2.3.4)

u = g(x, y), (x, y) ∈ Γ. (2.3.5)

Then there exists at most one solution u.

Exercise 2.3.4 Prove Theorem 2.3.4.
Hint: assume that there are two solutions u1 and u2 and consider the difference. �

Next we prove Theorem 2.3.2.

Proof of Theorem 2.3.2.
We prove the theorem for Ω ∈ R2. Any dimensionality is dealt with analogously.
Let um be the maximum on Γ, that is u ≤ um on Γ. We introduce the function

v(x, y) = u(x, y) + ε(x2 + y2), with ε > 0 arbitrarily. (2.3.6)

Since u is harmonic, this implies

Δv = 4ε > 0, in Ω. (2.3.7)

Suppose that v has a maximum in the open domain Ω, then Δv ≤ 0. This contra-
dicts with the strict inequality (2.3.7), and hence v cannot have a maximum in Ω.
Since Ω is a bounded domain in R2, there exists a radius R such that

R = max
x∈Γ

||x|| = max
x∈Γ

√
x2 + y2. (2.3.8)

This implies v(x, y) ≤ um + εR2 on Γ. Since v does not have a maximum within
the interior Ω, we deduce

u(x) ≤ v(x) ≤ um + εR2 in Ω(= Ω ∪ Γ). (2.3.9)

Since ε > 0 can be taken arbitrarily small, we get u ≤ um in Ω. Since um is attained
on Γ, it follows that a maximum can only be assumed on boundary Γ unless u is
constant on Ω. �

Uniqueness for the solution to the Poisson equation with Robin conditions can also
be proved easily.

Theorem 2.3.5 Let Ω be a bounded domain in R
2 with boundary Γ, and let

u ∈ C2(Ω) ∩ C1(Ω) satisfy

−Δu = f (x, y)), (x, y) ∈ Ω, (2.3.10)

σu +
∂u

∂n
= g(x, y), (x, y) ∈ Γ (2.3.11)

with σ > 0. Then there exists at most one solution u.
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Exercise 2.3.5 Prove Theorem 2.3.5.
Hints: Assume that there are two solutions u1 and u2 and consider the difference
v = u1 − u2. Use multiplication by v and integration by parts to conclude that v = 0 on
Ω. �

Theorem 2.3.6 Let u ∈ C2(Ω) ∩ C(Ω) satisfy

−Δu ≥ 0, in Ω, (2.3.12)

u = 0, on Γ, (2.3.13)

where Ω is a bounded domain with boundary Γ, then u ≥ 0 in Ω

Exercise 2.3.6 Prove Theorem 2.3.6.
Reason by contradiction and use the Completeness Principle which is: if u ∈ C(Ω) where
Ω is a closed bounded set, then u must have a global maximum and minimum on Ω. �

Exercise 2.3.7 Show that the elliptic operator auxx + 2buxy + cuyy, a,b,c constant,

ac − b2 > 0 satisfies the same maximum principle as the Laplacian operator.
Use scaling and rotation of the coordinates. �

Qualitative properties of the solutions to Poisson’s or Laplace’s equation like the
maximum principle are an important tool to evaluate the quality of numerical so-
lutions. Indeed we want our numerical solution to inherit these properties.

2.3.3 Existence

To prove existence of a solution of Poisson’s equation is very hard. In general one
needs extra requirements on the smoothness of the boundary. This is far outside
the scope of this book, the interested reader may look at [12]. As we shall see
in Chapter 7, there is an alternative way to obtain a generalized solution to these
problems. The existence proof of such a solution is somewhat easier.

2.4 Examples

In this section we give a few examples of PDE’s that describe physical and technical
problems. For all problems we consider a bounded region Ω ⊂ R2 with boundary
Γ.

2.4.1 Flows driven by a potential

Flows driven by a potential we already met in Chapter 1. They all have the form

∂c(u)

∂t
= div λ grad u + f (t, x, u). (2.4.1)

For uniqueness c must be a monotone function of u and for stability it must be
non-decreasing. In ordinary heat transfer, ground water flow and diffusion, c is
linear. In phase transition problems and diffusion in porous media it is non linear.
If f depends on u, the function f may influence stability of the equation.

2.4.1.1 Boundary conditions

In Section 2.2 three types of linear boundary conditions have been introduced.
These conditions may occur in any combination. This is not a limitative enumera-
tion, there are other ways to couple the heat flow at the boundary to the tempera-
ture difference one way or another, mostly non linear.
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2.4.1.2 Initial condition

To guarantee that Problem 2.4.1 with boundary conditions (2.2.2) to (2.2.4) has a
unique solution u(x, t), it is necessary that u is prescribed at t = t0: u(x, t0) =
u0(x), ∀x ∈ Ω.

2.4.1.3 Equilibrium

An equilibrium of Equation (2.4.1) is reached when all temporal dependence has
disappeared. But this problem can also be considered in its own right:

−div λ grad u = f (x, u), (2.4.2)

with boundary conditions (2.2.2) to (2.2.4).

2.4.2 Convection-Diffusion

The convection-diffusion equation describes the transport of a pollutant with con-
centration, c, by a transporting medium with given velocity, u. The equation is

∂c

∂t
+ u · grad c = div λ grad c + f (t, x, c). (2.4.3)

Comparison of Equation (2.4.3) with (2.4.1) shows that a convection term u · grad c
has been added. Boundary and initial conditions are the same as for the potential
driven flows.

In cases where the diffusion coefficient, λ, is small compared to the velocity, u,
the flow is dominated by the convection. The problem then becomes singularly per-
turbed and in these cases the influence of the second order term is mostly felt at
the boundary in the form of boundary layers. This causes specific difficulties in the
numerical treatment.

2.4.3 Navier-Stokes equations

The Navier-Stokes Equations describe the dynamics of material flow. The momen-
tum equations are given by:

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = div sx + ρbx, (2.4.4a)

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = div sy + ρby. (2.4.4b)

We shall not derive the equations (see for instance [3]), but we will say a few things
about their interpretation. The equations describe Newton’s second law on a small

volume V of fluid with density, ρ, and velocity, u =

(
u
v

)
, moving along with the

flow. Thus, a particle P ∈ V with coordinates x at time thas at time t + Δt, with
Δt → 0, coordinates x + uΔt. Therefore the change in velocity of a moving particle
is described by

Δu = u(x + uΔt, t + Δt)− u(x, t). (2.4.5)

We recall Taylors theorem in three variables:

f (x + h, y + k, t + τ) = f (x, y) + h
∂ f

∂x
+ k

∂ f

∂y
+ τ

∂ f

∂t
+O(h2 + k2 + τ2). (2.4.6)



24 Numerical methods in scientific computing

Applying this to Equation (2.4.5) we get:

Δu = uΔt
∂u

∂x
+ vΔt

∂u

∂y
+ Δt

∂u

∂t
, (2.4.7a)

Δv = uΔt
∂v

∂x
+ vΔt

∂v

∂y
+ Δt

∂v

∂t
. (2.4.7b)

If we divide both sides by Δt and let Δt → 0 we find the material derivative

Du

Dt
= u

∂u

∂x
+ v

∂u

∂y
+

∂u

∂t
, (2.4.8a)

Dv

Dt
= u

∂v

∂x
+ v

∂v

∂y
+

∂v

∂t
. (2.4.8b)

The right hand side of Equations (2.4.4) consists of the forces exerted on a (small)
volume of fluid. The first term describes surface forces like viscous friction and
pressure, the second term describes body forces like gravity. The quantity

Σ =

(
sT

x

sT
y

)
=

(
σxx τxy

τyx σyy

)
(2.4.9)

is called the stress tensor.

The form of the stress tensor depends on the fluid. A Newtonian fluid has a stress
tensor of the form:

σxx = −p + 2μ
∂u

∂x
, (2.4.10a)

σyy = −p + 2μ
∂v

∂y
, (2.4.10b)

τxy = μ(
∂u

∂y
+

∂v

∂x
), (2.4.10c)

in which p is the pressure and μ the dynamic viscosity. The minimum configura-
tion to be of practical importance requires a mass conservation equation in addi-
tion to (2.4.4):

∂ρ

∂t
+ div (ρu) = 0, (2.4.11)

and a functional relation between ρ and p like for instance Boyle’s law.

An important special case is where ρ is constant and Equation (2.4.11) changes into

div u = 0, (2.4.12)

the incompressibility condition. In this case ρ can be scaled out of Equation (2.4.4)
and together with (2.4.10) and (2.4.12) we obtain

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂ p̄

∂x
= νΔu + bx, (2.4.13a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

∂ p̄

∂y
= νΔv + by, (2.4.13b)

∂u

∂x
+

∂v

∂y
= 0, (2.4.13c)

with ν = μ
ρ the kinematic viscosity and p̄ = p

ρ the kinematic pressure. In this case

p̄ is determined by the equations.

Exercise 2.4.1 Derive Equation (2.4.13). �
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2.4.3.1 Boundary conditions

On each boundary two boundary conditions are needed, one in the normal di-
rection and one in the tangential direction. This can be either the velocity or the
stress. The tangential stress is computed by (t, Σ · n) for given unit tangent vector,
t, and unit normal vector, n. For reasons that go beyond the scope of this book, no
boundary conditions for the pressure are required. For an extensive treatment of
the Navier-Stokes equations see [39] and [15].

2.4.4 Plane stress

Consider the flat plate in Figure 2.2.

DB

A

C

Ω

Γ

Figure 2.2: Fixed plate with forces applied along the boundary.

The plate is fixed along side ABC but forces are applied along the free bound-
ary ADB as a consequence of which the plate deforms in the x-y-plane. We are

interested in the stresses Σ =

(
σxx τxy

τxy σyy

)
and the displacements u =

(
u
v

)
. The

differential equations for the stresses (compare also (2.4.4)) are given by

∂σxx

∂x
+

∂τxy

∂y
+ b1 = 0, (2.4.14a)

∂τxy

∂x
+

∂σyy

∂y
+ b2 = 0, (2.4.14b)

in which b is the (given) body force per unit volume. Usually only gravity
contributes to the body force term. We transform Equations (2.4.14) in two stages
into a set of PDE’s in the displacements. If the medium is isotropic we have a a very
simple form of Hooke’s Law relating stresses and strains:

Eεx = σxx − νσyy, (2.4.15a)

Eεy = −νσxx + σyy, (2.4.15b)

Eγxy = 2(1+ ν)τxy. (2.4.15c)
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E, the modulus of elasticity and ν, Poisson’s constant, are material constants. Fur-
thermore, for infinitesimal strains, there is a relation between strain and displace-
ment:

εx =
∂u

∂x
, (2.4.16a)

εy =
∂v

∂y
, (2.4.16b)

γxy =
∂u

∂y
+

∂v

∂x
. (2.4.16c)

This leads to the following set of PDE’s in the displacements u:

E

1 − ν2

∂

∂x

(
∂u

∂x
+ ν

∂v

∂y

)
+

E

2(1 + ν)

∂

∂y

(
∂u

∂y
+

∂v

∂x

)
= −b1, (2.4.17a)

E

2(1 + ν)

∂

∂x

(
∂u

∂y
+

∂v

∂x

)
+

E

1 − ν2

∂

∂y

(
ν

∂u

∂x
+

∂v

∂y

)
= −b2. (2.4.17b)

Exercise 2.4.2 Derive Equations (2.4.17) �

2.4.4.1 Boundary conditions

The boundary conditions are comparable to those of the Navier-Stokes equations.
At each boundary point we need a normal and a tangential piece of data, either
the displacement or the stress.

Exercise 2.4.3 Formulate the boundary conditions along ABC. �

Exercise 2.4.4 Along ADC the force per unit length is given: f. Show that

σxxnx + τxyny = f1, (2.4.18a)

τxynx + σyyny = f2, (2.4.18b)

and hence:

nxE

1 − ν2

(
∂u

∂x
+ ν

∂v

∂y

)
+

nyE

2(1 + ν)

(
∂u

∂y
+

∂v

∂x

)
= f1, (2.4.19a)

nxE

2(1 + ν)

(
∂u

∂y
+

∂v

∂x

)
+

nyE

1 − ν2

(
ν

∂u

∂x
+

∂v

∂y

)
= f2. (2.4.19b)

�

2.4.5 Biharmonic equation

The prototype of a fourth order PDE is the biharmonic equation on a bounded
region Ω ⊂ R2 with boundary Γ:

ΔΔw = f . (2.4.20)

It describes the vertical displacement w of a flat plate in the x-y-plane, loaded per-
pendicularly to that plane with force f . To this problem belong three sets of phys-
ical boundary conditions:

1. Clamped boundary

w = 0,
∂w

∂n
= 0, x ∈ Γ. (2.4.21)
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2. Freely supported boundary

w = 0,
∂2w

∂n2
+ ν

∂2w

∂t2
= 0, x ∈ Γ. (2.4.22)

3. Free boundary

∂2w

∂n2
+ ν

∂2w

∂t2
= 0,

∂3w

∂n3
+ (2 − ν)

∂3w

∂t3
= 0, x ∈ Γ. (2.4.23)

∂
∂n and ∂

∂t stand for the normal and tangential derivative respectively. Further ν is
Poisson’s constant, which depends on the material. In the biharmonic equation
the natural boundary conditions contain derivatives of second order or higher, all
other boundary conditions are essential.

2.5 Summary of Chapter 2

In this chapter we obtained a classification of second order PDE’s into hyperbolic,
parabolic and elliptic equations. We formulated appropriate initial and boundary
conditions to guarantee a unique solution. We obtained a maximum principle
for harmonic functions and used this to prove uniqueness for elliptic equations.
We looked at a few examples of partial differential equations in various fields of
physics and technology.





Chapter 3

Finite difference methods

Objectives

In this chapter we shall look at the form of discretization that has been used since
the days of Euler (1707-1783): finite difference methods. To grasp the essence of the
method we shall first look at some one dimensional examples. After that we con-
sider two-dimensional problems on a rectangle because that is a straightforward
generalization of the one dimensional case. We take a look at the discretization of
the three classical types of boundary conditions. After that we consider more gen-
eral domains and the specific problems at the boundary. Finally we shall turn our
attention to the solvability of the resulting discrete systems and the convergence
towards the exact solution.

3.1 The cable equation

As an introduction we consider the displacement y of a cable under a vertical load.
(See Figure 3.1)

y

x

0 1

Figure 3.1: Loaded cable.

This problem is described mathematically by the second order ordinary differential
equation:

− d2y

dx2
= f , (3.1.1)

and since the cable has been fixed at both ends we have a Dirichlet boundary con-
dition at each boundary point:

y(0) = 0, y(1) = 0. (3.1.2)

Note that here also one boundary condition is necessary for the whole boundary,
which just consists of two points.
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1

x

0

x x x x x x0 1 2 i 1 i i+1 N

h

Figure 3.2: Subdivision of the interval (0, 1).

3.1.1 Discretization

We divide the interval (0, 1) into N subintervals with length h = 1/N (See Fig-
ure 3.2). We introduce the notation xi = ih, yi = y(xi) and fi = f (xi).
In the node point xi we have:

− d2y

dx2
(xi) = fi, (3.1.3)

and we shall try to derive an equation that connects the three variables yi−1, yi,
and yi+1 with the aid of equation (3.1.3). We recall Taylors formula for sufficiently
smooth y:

yi+1 = yi + h
dy

dx
(xi) +

h2

2!

d2y

dx2
(xi) +

h3

3!

d3y

dx3
(xi) +O(h4), (3.1.4a)

yi−1 = yi − h
dy

dx
(xi) +

h2

2!

d2y

dx2
(xi)− h3

3!

d3y

dx3
(xi) +O(h4). (3.1.4b)

When we sum equations (3.1.4) together the odd order terms drop out, which gives
us:

yi+1 + yi−1 = 2yi + h2 d2y

dx2
(xi) + O(h4). (3.1.5)

Rearranging and dividing by h2 finally gives us the second divided difference approx-
imation to the second derivative:

yi−1 − 2yi + yi+1

h2
=

d2y

dx2
(xi) + O(h2). (3.1.6)

The O(h2) error term is called the truncation error, caused by truncating the Taylor
series.

Exercise 3.1.1 Show by the same method that for sufficiently smooth y the forward di-
vided difference (yi+1 − yi)/h satisfies

yi+1 − yi

h
=

dy

dx
(xi) + O(h). (3.1.7)

Show that the backward divided difference (yi − yi−1)/h satisfies

yi − yi−1

h
=

dy

dx
(xi) + O(h). (3.1.8)

�

Exercise 3.1.2 Show by the same method that for sufficiently smooth y the central di-
vided difference (yi+1 − yi−1)/2h satisfies

yi+1 − yi−1

2h
=

dy

dx
(xi) +O(h2). (3.1.9)

�
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Subsequently, we apply equation (3.1.6) to every internal node of the interval, i.e.
x1, x2, . . . , xN−1, neglecting the O(h2) error term. Of course by doing so, we only
get an approximation (that we denote by ui) to the exact solution yi. So we get

h−2(−u0 + 2u1 − u2) = f1 (3.1.10a)

h−2(−u1 + 2u2 − u3) = f2 (3.1.10b)

. . .
. . .

. . .
...

h−2(−uN−2 + 2uN−1 − uN) = fN−1. (3.1.10c)

Taking into account the boundary values y(0) = y(1) = 0 we find that u0 = uN =
0. These values are substituted into equations (3.1.10a) and (3.1.10c) respectively.
Hence the system becomes

h−2(2u1 − u2) = f1, (3.1.11a)

h−2(−u1 + 2u2 − u3) = f2, (3.1.11b)

. . .
. . .

. . .
...

h−2(−uN−2 + 2uN−1) = fN−1. (3.1.11c)

Or in matrix-vector notation:
Au = f, (3.1.12)

with A an (N − 1)× (N − 1) matrix:

A = h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . . . . 0

−1 2 −1 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 −1 2 −1
0 . . . . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1.13)

Exercise 3.1.3 Show that in case of non-homogeneous boundary conditions, y(0) = a,
and y(1) = b, the matrix A is given by (3.1.13) and that the first and last element of the
right-hand side f are given by f1 + h−2a respectively fN−1 + h−2b. �

The solution of this system can be found by LU-decomposition. Since the matrix A is
symmetric positive definite, also Cholesky decomposition (see[24]) can be used. The
proof of positive definiteness will be given in the next section.

3.1.2 Properties of the discretization matrix A

From Expression (3.1.13) it is clear that the matrix A is symmetric. It is easy to
prove that the (N − 1)× (N − 1) matrix A is positive.

Exercise 3.1.4 Show that matrix A is positive.
Hint use Theorem (1.5.7). �

There are several methods to prove that the matrix A is positive definite. The first
one is by showing that the inner product xT Ax can be written as a sum of squares.

Exercise 3.1.5 Show that

h2(x, Ax) = x2
1 +

N−2

∑
k=1

(xk+1 − xk)
2 + x2

N−1. (3.1.14)

Derive from this result that A is positive definite. �
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Another method is to estimate the eigenvalues of the matrix. This can be done
by the von Neumann method. This approach has the advantage that the smallest
eigenvalue can be estimated more accurately than with the bounds that follow
from Gershgorin’s theorem. Later on it will be used to get a global error estimate.
The von Neumann method is based on the fact that the solution of Equation (3.1.3)
can be written as

y(x) =
∞

∑
α=1

ραe−παxi, (3.1.15)

where i is the imaginary unit (i2 = −1).
In the discrete case we expand the k-th component of u in a similar way (xk = kh)

uk =
N−1

∑
α=1

ραe−παkhi. (3.1.16)

The eigenvalue problem Av = λv results in

1

h2
(−uk−1 + 2uk − uk+1) = λuk. (3.1.17)

Substitution of (3.1.16) in (3.1.17) gives

1

h2

N−1

∑
α=1

ρα(−e−πα(k−1)hi + 2e−παkhi − e−πα(k+1)hi) = λ
N−1

∑
α=1

ραe−παkhi. (3.1.18)

This must be true for arbitrary ρα, hence each factor following ρα in the sum should
be zero. Subdivision by e−παkhi results in

1

h2
(2 − eπαhi + e−παhi) = λ, (3.1.19)

and since

cos(θ) =
eiθ + e−iθ

2
, (3.1.20)

we get N − 1 eigenvalues λα:

λα =
2(1− cos(παh))

h2
. (3.1.21)

Exercise 3.1.6 Use the Taylor expansion of the cosine to show that the smallest eigenvalue
of the symmetric matrix A is approximately π2. �

Since the smallest eigenvalue of the symmetric matrix, A, is positive, it follows that
A is positive definite.

Remarks

- The eigenvalue problem corresponding to the Laplace Equation, which is
given by

−d2ϕ

dx2
= μ2 ϕ, ϕ(0) = ϕ(1) = 0, (3.1.22)

is a special case of the set of Sturm-Liouville problems. The eigenvalues of
Equation (3.1.22) form an infinite set given by μ2 = k2π2 with k any positive
integer. Hence the smallest eigenvalue is exactly π2.

- The von Neumann method is only applicable for simple cases with constant
coefficients, like the one treated here.
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3.1.3 Global error

We will estimate the order of the error in our approximate solution u. From Equa-
tion (3.1.6) we know that each of the equations of the set (3.1.11) contains an error
of O(h2), provided that y is sufficiently smooth. Suppose that the error in the k-th
equation, ek is given by ek = h2 pk. We know that pk remains bounded as h → 0 by
the definition of O. Now let Δyk = yk − uk, where yk is the exact solution and uk

our numerical approximation. Then

Ay = f + h2p, (3.1.23)

and
Au = f. (3.1.24)

We subtract (3.1.24) from (3.1.23) to obtain a set of equations for the error

AΔy = h2p. (3.1.25)

We shall show the global error Δy is of order O(h2). This is formulated in the
following theorem:

Theorem 3.1.1 The discretization of the Laplace Equation (3.1.1) with boundary condi-
tions (3.1.2) by Equation (3.1.6) gives a global error of O(h2) in L2-norm. �

Proof
From Equation (3.1.25) we get

||Δy||2 ≤ ||A−1||2h2||p||2, (3.1.26)

and since the L2-norm of the inverse of a positive definite matrix is equal to the
inverse of the smallest eigenvalue, λ1, we get

||Δy||2 ≤ h2

λ1
||p||2 ≈ h2

π2
||p||2. (3.1.27)

�

In this special case it is also possible to estimate the error in the maximum norm as
will be shown in the following theorem.

Theorem 3.1.2 Let the discretization give a truncation error of ek = h2 pk in the k-th
equation, then

‖Δy‖∞ ≤ h2

8
‖p‖∞.

�

The above theorem will be proved in Exercises 3.1.7 and 3.1.10.

Exercise 3.1.7 Let d be a vector with components dk = 1, k = 1, 2, . . . , N − 1. Show
by substitution that the solution e of the set of equations Ae = d has components ek =
1
2 h2(N − k)k, k = 1, 2, . . . , N − 1. Show from this result, that ‖e‖∞ ≤ 1/8. (Hint:
Nh = 1, and by definition ‖p‖∞ = maxk |pk|.) �

In Chapter 2, we saw that the smooth solutions of Laplace’s equation satisfy a
maximum principle. This should also hold for the numerical solution, which is
obtained after the discretization. The following theorem represents the discrete
version of the maximum principle:
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Theorem 3.1.3 (Discrete Maximum Principle) The vector inequality y ≥ x means that
the inequality is valid for every component. Let A be the discretization matrix as in
(3.1.13), then Au ≥ 0 implies u ≥ 0. �

Exercise 3.1.8 Prove Theorem 3.1.3. Reason by contradiction and assume that u has a
negative minimum for some component uk. Now consider the k-th equation and show that
this is impossible. �

The next important property is the existence and uniqueness of a numerical solu-
tion. This is formulated in the following theorem:

Theorem 3.1.4 (Existence and uniqueness)

1. Let A be given as in equation (3.1.13), then Au = 0 implies u = 0.

2. From this, it follows that the set of equations Au = f has a solution for every f and
that this solution is unique.

�

Exercise 3.1.9 Prove Theorem 3.1.4. Use the result from Theorem 3.1.3. �

Exercise 3.1.10 With the definitions as in Exercise 3.1.7, show that

−h2‖p‖∞e ≤ Δy ≤ h2‖p‖∞e. (3.1.28)

Show that therefore

‖Δy‖∞ ≤ h2

8
‖p‖∞. (3.1.29)

Hint: use Theorem (3.1.3). �

This concludes the proof of Theorem 3.1.2.

3.2 Some simple extensions of the cable equation

The Laplace Equation (3.1.1) is a special case of the diffusion equation

− d

dx
(κ(x)

dϕ

dx
) = f , (3.2.1)

with boundary conditions

ϕ(0) = a, ϕ(1) = b, (3.2.2)

and κ(x) a positive function of x.

3.2.1 Discretization of the diffusion equation

There are several possibilities to discretize Equation (3.2.1) with an accuracy of
O(h2). The first one is to rewrite Equation (3.2.1) as

−κ(x)
d2 ϕ

dx2
− dκ(x)

dx

dϕ

dx
= f . (3.2.3)

However, if we apply central differences to discretize (3.2.3), the symmetry that is
inherent to Equation (3.2.1) is lost.
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x x x x xi 1/2 i i+1/2 i+1i 1

Figure 3.3: Position of discretization points.

One could use Taylor expansion to derive a O(h2) symmetric discretization of
(3.2.1). Unfortunately, such an approach is quite complicated. A better method
is to use the central divided differences of Equation (3.1.2) repeatedly. Define

y(x) = κ(x)
dϕ

dx
(3.2.4)

and use central differences based on the midpoints xi− 1
2
, xi+ 1

2
(See Figure 3.3) to

get
yi+ 1

2
− yi− 1

2

h
=

dy

dx
+ O(h2). (3.2.5)

Substitution of (3.2.4), (3.2.5) into (3.2.1) gives

−
κ(xi+ 1

2
) dϕ

dx (xi+ 1
2
)− κ(xi− 1

2
) dϕ

dx (xi− 1
2
)

h
= − d

dx
(κ(x)

dϕ

dx
) +O(h2). (3.2.6)

Next use central differences to discretize
dϕ
dx to get the final expression

−κ(xi+ 1
2
)

ϕi+1 − ϕi

h2
+ κ(xi− 1

2
)

ϕi − ϕi−1

h2
= fi. (3.2.7)

Exercise 3.2.1 Use Taylor series expansion to prove that

κ(xi+ 1
2
) = κ +

h

2
κ′ + h2

8
κ′′ +O(h3). (3.2.8)

Derive a similar expression for κ(xi− 1
2
).

Use Taylor series expansion to prove that

−1

h
[κ(xi+ 1

2
)

ϕi+1 − ϕi

h
− κ(xi− 1

2
)

ϕi − ϕi−1

h
] = − d

dx
[κ(xi)

dφ

dx
(xi)] +O(h2). (3.2.9)

Hint: Use Equation (3.2.3). �

This discretization is clearly symmetric and one can prove that it is also positive
definite. Hence the original properties of Equation (3.2.1) are kept.

3.2.2 Boundary conditions

The treatment of Dirichlet boundary conditions is trivial as shown in the previous
section. In case the boundary condition contains derivatives, getting an O(h2) ac-
curacy, requires a thorough discretization.
Consider the Laplace Equation (3.1.1) with boundary conditions

y(0) = a,
dy

dx
(1) = c. (3.2.10)

If we use the subdivision of Figure (3.2) the value of yN is unknown. Since the
discretization (3.1.6) is only applicable to internal points (why?), we need an extra
equation to get a square matrix. The most simple method is to use a backward
difference to discretize the Neumann boundary condition. This introduces an ex-
tra equation, but the truncation error is only O(h) according to Exercise (3.1.1).
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A better method is to introduce an extra virtual point, xN+1, outside the domain.
This implies that the discretization (3.1.6) can be extended to node xN . The Neu-
mann boundary condition in x = 1 can be discretized by central differences. So
y(xN+1) can be expressed into y(xN) and y(xN−1), and this can be substituted in
the discretization of the differential equation in x = 1. In fact the virtual point is
eliminated in this way. The error in each of the steps is O(h2), but unfortunately
the symmetry of the matrix is lost. Another option is to let the boundary x = 1 be
in the middle of the interval (xN−1, xN) as in Figure (3.4). If we omit the truncation

1

x

0

x x x x x0 1 2 i 1 i i+1

h

xNx
N 1

Figure 3.4: Subdivision with virtual point.

error, Equation (3.1.6) in i = N becomes

−yN−1 − 2yN + yN+1

h2
= fN . (3.2.11)

Central difference discretization of
dy
dx = c gives

yN+1 − yN

h
= c. (3.2.12)

and substitution of (3.2.12) in (3.2.11) results in

−yN−1 + yN

h2
= fN +

c

h
. (3.2.13)

Remark
A more simple way to get a symmetrical matrix would be to use the original matrix
and to subdivide the last row of matrix and right-hand side by 2. However, such
an approach is only applicable for constant coefficients.

Although in each step of the derivation O(h2) approximations are used, still the
local truncation error of Equation (3.2.13) is O(h), see Exercise (3.2.2)

Exercise 3.2.2 Show that the Taylor series expansion around xN of the left-hand side of
Equation (3.2.13) can be written as

y′

h
− y′′

2
+

h

6
y′′′ +O(h2), (3.2.14)

where y = y(xN) = y(1 − h
2 ).

Show, using a Taylor series around xN, that the first derivative of y(x) in point x = 1 can
be written as

y′(1) = y′ + h

2
y′′ + h2

8
y′′′ + O(h3). (3.2.15)

Show by substitution of (3.2.15) in (3.2.14) and the boundary condition (3.2.10) that the
local truncation error of (3.2.13) is O(h). �

It is rather disappointing that the local truncation error is O(h), despite the fact that
we used O(h2) approximations in each step. Fortunately it is possible to prove that
the global error is still O(h2). For that purpose we write the truncation error for
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the complete system as h2p + hq, where p is defined as in (3.1.23) and q is a vector
that is completely zero except for the last component which is equal to qN , so

q = (0, 0, ..., 0, qN)
T. (3.2.16)

The global error Δy can be split into Δy = Δy1 + Δy2, with

AΔy1 = h2p, (3.2.17)

and

AΔy2 = hq. (3.2.18)

From Theorems (3.1.1) and (3.1.2) it follows that ||Δy1|| = O(h2). The exact solu-
tion of (3.2.18) is (Δy2)i = h2xi, hence the global error ||Δy|| is also O(h2).

Exercise 3.2.3 Show that ϕ(x) = hqnx is the solution of

− d2 ϕ
dx2 = 0, ϕ(0) = 0,

dϕ
dx (1) = hqN.

Deduce from this result that (Δy2)i = h2qnxi, and hence ||Δy2|| = |qn|h2. �

Periodical boundary conditions require a slightly different approach. Such bound-
ary conditions are for example used in case the solution repeats itself endlessly.
Consider for example the Poisson equation

−d2u

dx2
= f (x) x ∈ [0, 1], (3.2.19)

where u(x) and f (x) are periodical functions with period 1.
Periodicity implies

u(x) = u(x + L) (3.2.20)

with L the length of the interval. Therefore the trivial boundary condition is

u(0) = u(1). (3.2.21)

However, since a second order elliptic equation requires a boundary condition for
the whole boundary, two boundary conditions are needed. The second boundary
condition one can use is

du

dx
(0) =

du

dx
(1). (3.2.22)

Exercise 3.2.4 Derive (3.2.22). Hint use (3.2.20). �

To discretize Equation (3.2.19) we use the grid of Figure (3.2). The discretization of
the differential equation is standard. The discretization of the boundary condition
(3.2.21) is trivial. It is sufficient to identify the unknowns u0 and uN and represent
them by one unknown only (say uN). To discretize boundary condition (3.2.22)
one could use divided differences for both terms in the equation. A more natural
way of dealing with this boundary condition is to use the periodicity explicitly by
discretizing the differential equation (3.2.19) in x = 1 and using the fact that the
next point is actually x1. So we use condition (3.2.22). Hence

−uN−1 + 2uN − uN+1

h2
= fN . (3.2.23)

Exercise 3.2.5 Why is it sufficient to apply (3.2.23) only for x = 1? �
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Exercise 3.2.6 Show that the discretization of (3.2.19) using (3.2.23) gives the following
system of equations

h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 −1 2 −1

−1 0 . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2
...
...

uN−1

uN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2
...
...

fN−1

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.2.24)

�

Note that for a fast solution of systems of equations of the shape (3.2.24) an adapted
solution method is required. See Chapter (9) for the details.

3.3 Singularly perturbed problems

Singularly perturbed problems occur when the coefficient of the highest order
derivative is very small compared to the other coefficients. A common example
is the convection diffusion equation:

−ε
d2c

dx2
+ v

dc

dx
= 0, c(0) = 0, c(1) = 1, (3.3.1)

that describes the transport of a pollutant with concentration c by a convecting
medium with known velocity v.

3.3.1 Analytical solution

For constant velocity v and diffusion coefficient ε there is a solution in closed form:

c(x) =
e

vx
ε − 1

e
v
ε − 1

. (3.3.2)

For v/ε = 40 the solution has been plotted in Figure 3.5.
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Figure 3.5: Analytic solution.
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The quantity vL/ε that occurs regularly in convection diffusion problems is called
the Péclet number Pe. The quantity L represents a characteristic length. It is a mea-
sure for by how much the convection dominates the diffusion. Note that there is a
boundary layer at x = 1: the right-hand side boundary condition makes itself felt
only very close to the boundary. This boundary layer will cause problems in the
numerical treatment.

3.3.2 Numerical approximation

Let us take central differences for the first derivative to provide us with an O(h2)
consistent scheme. This gives us a set of equations

Ac = f, (3.3.3)

in which A is given by

A = h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 + ph 0 . . . . . . 0

−1 − ph 2 −1 + ph 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 −1 − ph 2 −1 + ph

0 . . . . . . 0 −1 − ph 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.3.4)

and f by

f =
1

h2

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0

1 − ph

⎞⎟⎟⎟⎟⎟⎠ , (3.3.5)

in which ph = vh
2ε is called the mesh Péclet number.

Exercise 3.3.1 Derive matrix (3.3.4) and vector (3.3.5) �

In Figures 3.6 and 3.7 you see the numerical solution for Pe = 40 and h = 0.1 and
h = 0.025 respectively.
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Figure 3.6: Solution (solid) and exact (dotted), coarse grid.
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Figure 3.7: Solution, fine grid.

In Figure 3.6 we observe wiggles and negative concentrations. These oscillations
are unacceptable from a physical point of view. The wiggles have disappeared in
Figure 3.7.

3.3.2.1 Explanation

To explain this phenomenon we consider the following set of linear difference equa-
tions

buk−1 − (b + a)uk + auk+1 = 0, u0 = 0, un = 1. (3.3.6)

This system can be solved by substituting u = rk. From Equation (3.3.6) it follows,
that

b − (b + a)r + ar2 = 0, (3.3.7)

with solutions r = 1 and r = b/a. The general solution of (3.3.6) can now be
written as

uk = A + B

(
b

a

)k

. (3.3.8)

After application of the boundary conditions we find

uk =

(
b
a

)k − 1(
b
a

)n − 1
. (3.3.9)

Apparently it is necessary that b
a ≥ 0 to have a monotone, increasing solution.

3.3.2.2 Upwind differencing

For the mesh Péclet number ph we need the condition |ph| ≤ 1 to have a monotone
solution. This follows directly from the result of the previous section. To satisfy
this inequality we need a condition on the stepsize h: apparently we must have
h ≤ 2

Pe . This condition may lead to unrealistically small stepsizes, because in

practice Pe can be as large as 106. To overcome this you often see the use of backward
differences for v > 0 and forward differences for v < 0. This is called upwind
differencing.
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Exercise 3.3.2 Show that taking a backward difference leads to a three term recurrence
relation of the form:

(−1 − 2ph)uk−1 + (2 + 2ph)uk − uk+1 = 0. (3.3.10)

Show that this recurrence relation has a monotone solution if ph > 0. �

Exercise 3.3.3 Give the three term recurrence relation for v < 0. Show that this also has
a monotone solution. �

Upwind differencing has a big disadvantage: the accuracy of the solution drops
an order and in fact you’re having the worst of two worlds: your approximation is
bad and you will not be warned that this is the case. See Figure 3.8.
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Figure 3.8: Upwind (solid) and exact (dotted) solution.

Why is this approximation so bad? The first order approximation of the first
order derivative introduces an artificial diffusion term to suppress the wiggles.
This artificial diffusion is an order of magnitude larger than the physical diffusion.
So in fact you solve a different problem. See Exercise 3.3.4.

Exercise 3.3.4 Show that

ck − ck−1

h
= c′k −

h

2
c′′k + O(h2). (3.3.11)

Show that this approximation reduces the Péclet number to

P̂e =
Pe

1 + ph
. (3.3.12)

Deduce from this that p̂h < 1 for v > 0. Give analogous relations for v < 0 and explain
why it is necessary to take a forward difference in this case. �

Effectively, using upwind differencing, you are approximating the solution of

−(ε +
vh

2
)

d2c

dx2
+ v

dc

dx
= 0. (3.3.13)

It is clear that for a good accuracy vh
2 must be small compared to ε. Hence upwind

differencing produces nice pictures, but if you need an accurate solution, then,
central differences with small h are preferred.

A better way to handle the boundary layer is mesh refinement in the boundary layer
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itself. The boundary layer contains large gradients and to resolve these you need a
sufficient number of points. Actual practice shows that taking sufficient points in
the boundary layer suppresses the wiggles. In Figure 3.9 the solution is calculated
with 10 points only, but at nodes 0.5, 0.8, 0.85, 0.88, 0.91, 0.93, 0.95, 0.97, 0.99 and 1.
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Figure 3.9: Non equidistant node points.

In favor of the upwind differencing method it has to be said that it is the only
course of action available in the neighborhood of shocks. As a result you often see
methods with a higher accuracy in smooth regions of the solution that fall back on
the first order upwind scheme close to shocks.

3.3.2.3 Source terms

If source terms in the equation suppress the boundary layer there will be no wig-
gles in the numerical solution, even if the matrix does not satisfy the mesh Péclet
condition ph ≤ 1.

Exercise 3.3.5 Calculate with central differences the numerical solution of

−y′′ + vy′ = π2 sin πx + vπ cos πx, y(0) = y(1) = 0. (3.3.14)

Take v = 40 and h = 0.1. �

Remark
The use of the previous upwind differencing, also called first order upwind, may
be inaccurate, it usually produces nice pictures. This makes the method attrac-
tive from a selling point of view. In the literature more accurate higher upwind
schemes can be found. Treatment of these schemes goes beyond the scope of this
textbook.

3.4 The Laplacian equation on a rectangle

We now generalize our procedure to two dimensions. Consider a rectangle Ω with
length L and width W. In this rectangle we consider Poisson’s equation:

−Δu = f , (3.4.1)

with homogeneous boundary conditions u = 0 on Γ.
We divide Ω into small rectangles with sides Δx and Δy such that MΔx = L and
NΔy = W. At the intersections of the grid lines we have nodes or nodal points
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Figure 3.10: Rectangular grid with 5 point molecule.

where we shall try to find approximations of the unknown u. The unknown at
node (xi, yj) (or (i, j) for short) we denote by ui,j. In the same way as in Section 3.1
we replace the differential equation in this node by

−ui−1,j + 2ui,j − ui+1,j

Δx2
+

−ui,j−1 + 2ui,j − ui,j+1

Δy2
= fi,j. (3.4.2)

Exercise 3.4.1 Use Taylor expansion in two variables to show that the truncation error in
(3.4.2) is given by

Eij =
1

12

(
Δx2 ∂4u

∂x4
(xi, yj) + Δy2 ∂4u

∂y4
(xi, yj)

)
. (3.4.3)

In this expression terms of order 5 and higher in the Taylor expansion have been neglected.
�

Writing down equation (3.4.2) for every internal node point (i, j), i = 1, 2, . . . , M −
1, j = 1, 2, . . . , N − 1 presents us with a set of (M − 1)× (N − 1) equations with
just as many unknowns.

Exercise 3.4.2 Give the equation with node (1,5) as central node. Substitute the homoge-
neous boundary conditions. �

Exercise 3.4.3 Give the equation with node (M − 1, N − 1) as central node. Substitute
the homogeneous boundary conditions. �

3.4.1 Matrix vector form

Since the system we obtained is a linear system we can represent it in matrix vec-
tor form Au = f. This is not exactly a trivial task, because we have a vector of
unknowns with a double index and the conventional matrix vector representa-
tion uses a simple index. We shall show how to do this in a specific example,
M = 6, N = 4. First of all we show how to convert the double index (i, j) into a
single index α. This can be done in a number of ways, that are most easily repre-
sented in a picture.

3.4.1.1 Horizontal numbering

The nodes are numbered sequentially (see Figure 3.11).
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Figure 3.11: Horizontal numbering.

The conversion formula from double index (i, j) to single index α is straightfor-
ward:

α = i + (j − 1) ∗ (M − 1). (3.4.4)

Exercise 3.4.4 Show that A is a 3 × 3 block matrix in which each block is 5 × 5. What is
the band width of A? �

The diagonal blocks are tridiagonal, the sub and super diagonal blocks are diago-
nal and all other blocks are 0.

3.4.1.2 Vertical numbering

The nodes are numbered sequentially in vertical direction (see Figure 3.12).
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Figure 3.12: Vertical numbering.

The conversion formula from double index (i, j) to single index α is straightfor-
ward:

α = (i − 1) ∗ (N − 1) + j. (3.4.5)

Exercise 3.4.5 Show that A is a 5 × 5 block matrix in which each block is 3 × 3. What is
the band with of A? �

The diagonal blocks are tridiagonal, the sub and super diagonal blocks are diago-
nal and all other blocks are 0.
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Figure 3.13: Oblique numbering.

3.4.1.3 Oblique numbering

The nodes are numbered sequentially along lines i + j = k, k = 2, . . . , 8 (see Figure
3.13).

The conversion formula from double index (i, j) to single index α is not so straight-
forward. A is still a block matrix, in which the diagonal blocks increase in size from
1× 1 to 3× 3. The diagonal blocks are diagonal, the sub and super diagonal blocks
are diagonal and all other blocks are 0.

Exercise 3.4.6 What is the bandwidth of A? �

3.5 Boundary conditions extended

3.5.1 Natural boundary conditions

Basically natural boundary conditions (i.e. Neumann or Robin boundary conditions)
involve a flow condition. The treatment in 2D is similar to 1D (see Section 3.2.2).
Since these conditions are dealt with in a natural way by Finite Volume Methods
we postpone a more detailed discussion of that subject until the next chapter.

3.5.2 Dirichlet boundary conditions on non rectangular regions

Unfortunately on non rectangular regions the boundary does not coincide with the
grid, see Figure 3.14.

For each interior point we have an equation involving function values in five
nodes. The black points in Figure 3.14 have to be determined by the Dirichlet
boundary condition. It is acceptable to express a black point in a nearby boundary
value and the function values in one or more interior points (interior variables).
The idea is to end up with a system of equations that only contains interior vari-
ables. In this way we can guarantee that we have as many equations as unknowns.
We explain the way to proceed by an example. Consider the situation in Figure
3.15.

In this figure we have to express uS in the known value uB and the interior
variable uC. Let h be the distance between grid points and sh the fraction that
separates the boundary from the S-point. By linear interpolation we have

uB = (1 − s)uS + suC + O(h2), (3.5.1)
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Figure 3.14: Grid on non rectangular region.
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Figure 3.15: Boundary molecule.

and that gives us the relation that we can substitute into the equation:

uS =
uB − suC

1 − s
. (3.5.2)

If s is close to 1 this procedure may lead to an unbalanced set of equations. For that

reason we usually consider a point that is closer than say 1
4 h to the boundary as a

boundary point even if it belongs to the interior. In that case uS falls in between uB

and uC and the formulae change correspondingly.

Here we have

uS =
suC + uB

1 + s
. (3.5.3)

Remark
The method treated here is quite old fashioned. It is better to use either a co-
ordinate transformation (Section 3.7) or alternatively the Finite Element Method
(Chapter 6).



3. Finite difference methods 47

uS

uC

h

uB

sh

Figure 3.16: Boundary molecule, interior boundary point.

3.6 Global error estimate

We shall try to get some of the flavor of global error estimates for numerical solu-
tions of Problem 3.4.1. The L2 error estimate can be derived in the same way as
in Theorem 3.1.1. Here we shall concentrate ourselves to point wise estimates. In
order to do so we need to develop some properties for the discrete Laplace opera-
tor. These properties also hold in 3 dimensions, so in a certain way this is a generic
treatment of the problem. We will do the estimate on a rectangle with homoge-
neous Dirichlet boundary conditions, but in subsequent sections we shall hint at
ways to apply the theory to more general domains and boundary conditions.

3.6.1 A discrete maximum principle

If the N × N system of equations Au = f is a Finite Difference discretization of
Problem 3.4.1 with Dirichlet boundary conditions then A has the following prop-
erties:

ajk ≤ 0, if j �= k, (3.6.1a)

akk ≥
N

∑
j=1

j �=k

|akj|, k = 1, . . . , N. (3.6.1b)

We call matrices with property (3.6.1a) a Z-matrix and matrices with property
(3.6.1b) diagonally dominant. If inequality (3.6.1b) holds strictly for at least one k
the matrix is called strictly diagonally dominant. (There are complications if the
system can be split into independent subsystems, but that won’t bother us right
now.)

We use the notation y ≥ 0 for yk ≥ 0, k = 1, . . . , N. We formulate a very
important theorem for the solution of systems of strictly diagonally dominant Z-
matrices.

Theorem 3.6.1 (Discrete Maximum Principle) Let A be a strictly diagonally dominant
Z-matrix and let Au ≥ 0. Then

• (i) u ≥ 0.



48 Numerical methods in scientific computing

• (ii) u = 0 if and only if Au = 0.

Proof First we prove (i). Suppose uk < 0 for some k then u has a negative
minimum −M for some index K. Hence u ≥ −M. Now consider the inequality
with number K:

N

∑
j=1

aKjuj ≥ 0, (3.6.2)

hence

aKKuK ≥ −
N

∑
j=1

j �=K

aKjuj, (3.6.3)

and since uK = −M < 0 by hypothesis, we have

aKK M ≤
N

∑
j=1

j �=K

aKjuj. (3.6.4)

Because aKj ≤ 0, j �= K the right hand side of the inequality is majorized by taking
instead of uj the negative minimum −M. We observe that −aKj M = |aKj|M, j �= K
which lead us to:

aKK M ≤
N

∑
j=1

j �=K

|aKj|M. (3.6.5)

Since M > 0 we can divide both sides by M and arrive at a contradiction unless

aKK =
N

∑
j=1

j �=K

|aKj|. (3.6.6)

So (3.6.5) holds only for the equal case, and since −M is the minimum (3.6.4) im-
plies uj = −M for aKj < 0. This means that uj is constant for all elements j in
the molecule. We can repeat this argument for all molecules that have at least one
element j in common with a previously considered molecule. Finally we arrive at
a molecule where (3.6.1b) holds strictly. For that molecule we have a contradiction
unless M = 0. This proves part (i) of the theorem.
The if part of (ii) is trivial. The only if part is proven in Exercise (3.6.1). �

Exercise 3.6.1 Prove, under the hypothesis of Theorem 3.6.1 that Au ≤ 0 implies u ≤ 0
(Hint: consider −u). Use this result to prove that Au = 0 implies u = 0. �

According to Theorem 2.2.1 the solution of the Poisson equation with Neumann
boundary conditions is not unique. In that case the row sum of each row of the
matrix is equal to 0. In Exercise 3.6.2 it is shown that also the numerical solution is
not unique.

Exercise 3.6.2 Use the proof of Theorem 3.6.1 and Equation (3.6.5) to show that if equal-
ity holds in Equation (3.6.1b) for all k the system Au = 0 (A being a Z-matrix) has a
nontrivial solution. Determine that solution. �

Exercise 3.6.3 Use Theorem 3.6.1 to prove that if A is a strictly diagonally dominant Z-
matrix and Au = f and Aw = |f|, with f �= 0 then |u| ≤ w.
Hint: also consider A(−u). �



3. Finite difference methods 49

3.6.1.1 Discrete harmonics and linear interpolation

We show an important consequence of the discrete maximum principle. This the-
orem is in fact the discrete equivalent of the strong maximum principle (Theorem
(2.3.2).

Theorem 3.6.2 A discrete solution to Laplace’s equation with Dirichlet boundary condi-
tions has its maximum and minimum on the real boundary, provided the boundary condi-
tions have been approximated by linear interpolation.

Proof
We only sketch the proof, the reader will have no difficulty in filling in the details.
The ordinary five point molecule to approximate the Laplace operator generates
a strictly diagonally dominant Z-matrix, and application of linear interpolation
does not alter that. The inequality (3.6.1b) only holds for those molecules that
contain a Dirichlet boundary condition. So the maximum M will, by a now familiar
reasoning be attained by an interior point that is one cell away from the boundary,
like uC in Figure 3.16. This equation has been modified into:

−uW − uN − uE + (3 +
1

1 + s
)uC =

1

1 + s
uB. (3.6.7)

But since uN , uW and uE have to be not greater than M this means

−3M + (3 +
1

1 + s
)uC ≤ 1

1 + s
uB, (3.6.8)

or since uC = M by assumption

M ≤ uB. (3.6.9)

An analogous reasoning shows that the minimum m is attained at the physical
boundary. �

Exercise 3.6.4 Derive Equation (3.6.7). �

3.6.2 Super solutions

The (discrete) maximum principle is used to bound (discrete) solutions to Poisson’s
equation. Why would we want to do such a thing? Remember, that we have an
error estimate in the form:

Aε = h2p, (3.6.10)

in which the vector p is uniformly bounded as h → 0. Suppose we had a solution
q to the equation Aq = p; we would then have an error estimate ε = h2q. Usually
this is asking too much. But if we are able to bound the vector p by a vector r ≥ p
then the solution s to As = r bounds q by the discrete maximum principle: q ≤ s.
This gives us an error estimate as well: ε ≤ h2s. Such a super solution s is obtained
by solving the Laplacian for a specific right-hand side that has the properties:

• the solution can be easily obtained

• it dominates the right-hand side of the equation that we are interested in

An obvious choice for the vector r would be the constant vector h2‖p‖∞. We will
show that to get the solution s, it is sufficient to consider the equation −Δu = 1.
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3.6.2.1 A discrete solution to −Δu = 1

Consider the problem −Δv = 1 on a circle of radius 1 and the origin as its mid-
point with homogeneous Dirichlet boundary conditions. By substitution it is easily

verified that v = 1
4 (1 − x2 − y2) is the solution of this problem. But since second

divided differences are exact for polynomials of degree 2 (why?) the discrete func-

tion vij =
1
4 (1− x2

i − y2
j ) is a solution to the discretized equation Au = e in which e

contains all ones and the single index vector u is an appropriate remap of the dou-
ble index vector vij. That is, if we disregard the approximation to the boundary
conditions for the moment.

Exercise 3.6.5 Show that ‖u‖∞ = 1
4 . �

Exercise 3.6.6 Give the solution of −Δu = 1 with homogeneous Dirichlet boundary con-
ditions on a circle C with midpoint (0, 0) and radius R. Show that this is a super solution
to the same problem on an arbitrary G region wholly contained in C. Hint: consider the
difference of the two solutions and show that they satisfy a Laplace equation with non-
negative boundary conditions. Use Theorem 3.6.2 to conclude that the difference must be
nonnegative also. �

3.6.2.2 Pesky mathematical details: the boundary condition

To develop our train of thoughts unhampered in the previous section we over-
looked a pesky mathematical detail. At a boundary point we used linear interpo-
lation and that has influenced our equation somewhat. As a result, the function vij

as introduced in the previous paragraph is not really the solution of Au = e but
rather of a perturbed system Aũ = e + eb. The vector eb contains the interpolation
error of O(h2) at the boundary.

Exercise 3.6.7 Consider the discretization of −Δu = 1 with homogeneous Dirichlet bound-
ary conditions on the circle with radius 1 in the neighborhood of the boundary as in Figure
3.16. Show that this discretization is given by:

−uW − uN − uE + (3 +
1

1 + s
)uC = h2. (3.6.11)

Verify, that the discrete solution vij =
1
4 (1 − x2

i − y2
j ) does not satisfy this equation, but

rather the equation:

−uW − uN − uE + (3 +
1

1 + s
)uC = h2 +

s

4
h2. (3.6.12)

(Hint: 1 − x2
i − (yj − (1 + s)h)2 = 0.)

Show that this is equivalent with an error in the boundary condition ΔuB of O(h2). �

Exercise 3.6.8 Show by using Theorem 3.6.2 and the result of Exercise 3.6.7 that ũ−u =
O(h2). �

In the sequel we shall neglect the influence of linear interpolation error on the
boundary conditions.

3.6.2.3 A point wise error estimate to the discrete solution

Let us apply the results of the previous sections to our error estimate. We have the
following theorem:
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Theorem 3.6.3 Let Au = f be the discretization of the Poisson equation with homoge-
neous Dirichlet boundary conditions on a region G wholly contained in a circle with radius
R. Let the discretization error be given by Aε = h2p such that ‖p‖∞ is bounded as h → 0.
Then

‖ε‖∞ ≤ 1

4
R2h2‖p‖∞ (3.6.13)

Exercise 3.6.9 Explain why the midpoint of the circle does not play a role in Theorem
3.6.3. Is it true that we can take the smallest circle that wholly contains G? �

Exercise 3.6.10 Show that if Aw = ‖p‖∞e, then |ε| < h2w. �

Exercise 3.6.11 Prove Theorem 3.6.3. �

3.7 Boundary fitted coordinates

In Section 3.5 we payed attention to boundary conditions on general domains. A
different approach is the use of boundary fitted coordinates that make the bound-
ary of the domain a coordinate line. This usually leads to a reformulation of the
problem in general curvilinear coordinates. This solves one problem, but introduces
another because usually the PDE (even a simple PDE like the Laplacian) can easily
become very complex. This approach can also be used if one wants to apply a lo-
cal grid refinement. We will explain the principle for a one-dimensional problem.
Suppose that one has to solve the following problem:

− d

dx

(
D(x)

du

dx

)
= f (x), with u(0) = 0 and u(1) = 1. (3.7.1)

Here D(x) and f (x) are given functions. For specific choices of D(x) and f (x) a
local grid refinement is desirable at positions where the magnitude of the second
derivative is large. One can use a co-ordinate transformation such that the grid
spacing is uniform in the transformed co-ordinate. Let this co-ordinate be given
by ξ, then in general, the relation between x and ξ can be written as

x = Γ(ξ), (3.7.2)

where Γ represents the function for the co-ordinate transformation and we require
that Γ is a bijection (that is, Γ is one-to-one). Then, differentiation with respect to x
yields

1 = Γ′(ξ) dξ

dx
, (3.7.3)

so dξ
dx = 1

Γ′(ξ)
and this implies, after using the Chain Rule for differentiation

du

dx
=

1

Γ′(ξ)
du

dξ
. (3.7.4)

Hence, the differential equation (3.7.1) in x transforms into the following differen-
tial equation for ξ

− 1

Γ′(ξ)
d

dξ

[
D(Γ(ξ))

Γ′(ξ)
du

dξ

]
= f (Γ(ξ)).

u(ξL) = 0, u(ξR) = 1,

(3.7.5)

where 0 = Γ(ξL) and 1 = Γ(ξR). The above differential equation is much more
complicated than equation (3.7.1), but it can be solved on an equidistant grid. After
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the equation is solved, the solution is mapped onto the gridnodes on the x-number
line. In practice, one often does not know the function Γ(ξ) in an explicit form, then
one has to use a numerical approximation for the derivative of Γ(ξ). We will return
to this subject in Section 4.3.1.

Exercise 3.7.1 Consider equation (3.7.1), where

f (x) =

{
256 (x − 1/4)2(x − 3/4)2, for 1/4 < x < 3/4

0, elsewhere.

Suppose that we prefer to discretize such that the mesh is refined at positions where the
error is maximal. Then, one has to use a local mesh refinement near x = 1/2. Therefore,
we use the transformation x = Γ(ξ) = ξ2(3 − 2ξ). Show, that this transformation yields
a mesh refinement at x = 1/2, and give the transformed differential equation expressed in
ξ, in which one will use an equidistant grid. �

The extension to two dimensions is quite simple. Consider for example Poisson’s
equation on a circle.

−div grad u = f (x, y), for (x, y) ∈ Ω. (3.7.6)

In order to get a rectangular grid we map the circle onto a rectangle in (r, θ) space,
i.e. we transform to polar coordinates. This transformation is defined by

x = rcosθ, y = rsinθ. (3.7.7)

Exercise 3.7.2 Express the derivatives of u with respect to x and y in ∂u
∂r and ∂u

∂θ . �

Exercise 3.7.3 Show that the derivatives, ∂r
∂x , ∂r

∂y , ∂θ
∂x and ∂θ

∂y are given by(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

1

r

(
rcosθ rsinθ
−sinθ cosθ

)
. (3.7.8)

�

Exercise 3.7.4 Use the results of Exercises (3.7.2) and (3.7.3) to prove that the Poisson
equation (3.7.6) in polar coordinates is defined by

−
(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
= f (rcosθ, rsinθ). (3.7.9)

�

Remark
Note that r = 0 is a singular line in Equation (3.7.9).

Exercise 3.7.5 Which boundary conditions are needed to get rid of the singularity? �

Exercise 3.7.6 Discretize of Poisson’s equation on a circle of radius 1 in the (r, θ)-plane.
Use homogeneous Dirichlet boundary conditions on the circle. Formulate boundary condi-
tions for r = 0, θ = 0 and θ = 2π. �

3.8 Summary of Chapter 3

In this chapter we have seen finite difference methods in one and two dimensions.
We have looked at the effect of a boundary layer on numerical approximations. We
have derived point-wise error estimates for problems with homogeneous Dirichlet
boundary conditions using a discrete maximum principle. A method to include
Dirichlet boundary conditions on more general regions has been shown and finally
we have presented the formula of the Laplacian operator in general coordinates.



Chapter 4

Finite volume methods

Objectives

In the previous chapter we got to know discretization by finite differences. This
discretization has two major disadvantages: it is not very clear how to proceed
with non equidistant grids; moreover natural boundary conditions are very hard
to implement, especially in two or three dimensions. The finite volume discretiza-
tion that we are about to introduce do not possess these disadvantages. But they
apply only to differential operators in divergence or conservation form. For physical
problems this is rather a feature than a bug: usually the conservation property of
the continuous model will be inherited by the discrete numerical model.

We shall start out with a one dimensional example that we left dangling in our
previous chapter: a second order equation on a non equidistant grid. We shall
pay attention to Neumann and Robin boundary conditions too. Subsequently we
shall turn our attention to two dimensions and discretize the Laplacian in general
coordinates. Then we will look at problems with two components: fluid flow and
plane stress. We shall introduce the concept of staggered grids and show that that is
a natural way to treat these problems. There will be a problem at the boundaries
in this case that we have to pay attention to.

4.1 Heat transfer with varying coefficient

We consider the diffusion equation on the interval (0, 1) :

− d

dx

(
λ

dT

dx

)
= f , λ

dT

dx
(0) = 0,−λ

dT

dx
(1) = α(T − TR). (4.1.1)

In this equation λ may depend on the space coordinate x. TR is a (given) reference
temperature and as you see we have natural boundary conditions on both sides of
the interval. We divide the interval in (not necessarily equal) subintervals ek, k =
1, . . . , N, where ek is bounded by the nodal points (xk−1, xk). See Figure 4.1.

xx xk 1 k k+1

Figure 4.1: Non equidistant grid.

To derive a discrete equation to this problem we consider three subsequent
nodes in isolation xk−1, xk and xk+1, see Figure 4.2. We let hk = xk − xk−1, hk+1 =
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x x xx x
k 1 k 1/2 k k+1k+1/2

h hk k+1

Figure 4.2: Control volume.

xk+1 − xk and define xk−1/2 = xk − 1
2 hk and xk+1/2 = xk +

1
2 hk+1. We now integrate

Equation (4.1.1) over the control volume (xk−1/2, xk+1/2) to obtain

xk+1/2∫
xk−1/2

− d

dx

(
λ

dT

dx

)
dx =

xk+1/2∫
xk−1/2

f dx, (4.1.2)

−λ
dT

dx

∣∣∣∣
xk+1/2

+ λ
dT

dx

∣∣∣∣
xk−1/2

=

xk+1/2∫
xk−1/2

f dx. (4.1.3)

Equation (4.1.3) represents the physical conservation law: the difference between
the influx and outflux is equal to the production in the control volume. We may
approximate the derivatives on the left-hand side by central divided differences
and the integral on the right by one point integration to obtain:

λk−1/2
Tk − Tk−1

hk
− λk+1/2

Tk+1 − Tk

hk+1
=

1

2
(hk + hk+1) fk + ET, (4.1.4)

which after rearrangement becomes:

− λk−1/2

hk
Tk−1 +

(
λk−1/2

hk
+

λk+1/2

hk+1

)
Tk −

λk+1/2

hk+1
Tk+1

=
1

2
(hk + hk+1) fk + ET. (4.1.5)

The structure of the error term ET will be considered in Exercises 4.1.2 and 4.1.3.
To get a set of discrete equations we drop the error term.

Exercise 4.1.1 Show that in case of an equidistant grid Equation (4.1.5) without the error
term is identical to the finite difference discretization of (4.1.1) multiplied by the length h.
�

The error ET in Equation (4.1.5) consist of two terms, one part of the error, E1,
originates from the use of one point integration instead of exact integration, the
other part, E2, originates from the use of central differences instead of derivatives.
In the following exercise, it is shown that E1 = O(h2

k − h2
k+1) and E2 = O(h2

k −
h2

k+1). Further, if the grid spacing is determined by hk+1 = hk(1 + O(h)), then it

can be shown that E1 = O(h3) and E2 = O(h3). The global error is one order
lower, that is O(h2), since compared to the finite difference method all equations
are multiplied by the length h.

Exercise 4.1.2 Show that the error that originates from the one point integration is given
by E1 = O(h2

k − h2
k+1).

Hint: Assume that f (x) is the derivative of F(x). Express the integral in F and use Taylor
series expansion. �
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Exercise 4.1.3 Show that the error from the use of central differences is given by
E2 = O(h2

k − h2
k+1). You may assume that λ does not depend on x. �

Exercise 4.1.4 Show that if hk+1 = hk(1 + O(h)), k = 1, . . . , N then
hk+1 − hk = O(h2), k = 1 . . . N and that therefore both E1 = O(h3) and E2 = O(h3). �

4.1.1 The boundaries

At the left-hand boundary we take (x0, x1/2) as control volume and we integrate
to get:

λ
dT

dx

∣∣∣∣
x0

− λ
dT

dx

∣∣∣∣
x1/2

=

x1/2∫
x0

f dx. (4.1.6)

The left-hand boundary condition can be substituted directly:

− λ
dT

dx

∣∣∣∣
x1/2

=

x1/2∫
x0

f dx. (4.1.7)

Application of central differences and one point integration gives:

λ1/2

h1
T0 − λ1/2

h1
T1 =

1

2
h1 f0 + ET . (4.1.8)

The truncation error ET is O(h2
1) in this equation.

Exercise 4.1.5 Show that ET is O(h2
1) in the above equation. �

At the right-hand boundary we take (xN−1/2, xN) as control volume and inte-
grate to get:

λ
dT

dx

∣∣∣∣
xN−1/2

− λ
dT

dx

∣∣∣∣
xN

=

xN∫
xN−1/2

f dx. (4.1.9)

On substitution of the right-hand boundary condition this becomes:

λ
dT

dx

∣∣∣∣
xN−1/2

+ αTN =

xN∫
xN−1/2

f dx + αTR. (4.1.10)

Application of central differences and one point integration gives:

−λN−1/2

hN
TN−1 +

(
λN−1/2

hN
+ α

)
TN =

1

2
hN fN + αTR + ET . (4.1.11)

Remark
If we have for example a Dirichlet boundary condition T = T0, at the left-hand
side there is no need to use the control volume (x0, x1/2). We treat this boundary
condition like in Chapter 3, i.e. we substitute the given value and no extra equation
is required.
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4.1.2 Conservation

Finite volume schemes are often described as conservative schemes for the following
reason. When we write the finite volume equations in fluxes by applying Fick’s
(Darcy’s, Ohm’s, Fourier’s) law for each finite volume (xL, xR) the equation looks
like:

qR − qL =

xR∫
xL

f dx, (4.1.12)

or in words: what flows out minus what flows in equals the local production. This
will be true regardless of the numerical approximation to the fluxes. If the production
is zero, there will be no generation of mass (energy, momentum) by the numerical
scheme. The only error that will be made in the fluxes will be caused by the error
in approximating the production term.
In the following exercises we shall prove that the error in the flux is equal to the
error in inflow flux plus the maximum error in the production provided the flux
itself is not discretized.

Exercise 4.1.6 Show, that if the equation

− (
λy′

)′
= 0 (4.1.13)

is discretized on the interval (0, 1) by the Finite Volume Method, necessarily q0 = qN with
q = −λy′, regardless of the number of steps N. �

Exercise 4.1.7 Show that if the equation

− (
λy′

)′
= 1 (4.1.14)

is discretized on the interval (0, 1) by the Finite Volume Method, necessarily qN = q0 + 1
with q = −λy′, regardless of the number of steps N. �

We call the error in the fluxes dq and we shall calculate the various contributions to
it in the following exercises.

Exercise 4.1.8 Propagation of production error
Let dqk − dqk−1 = hkEk, where ∑k hk = 1. Show that |dqk| < |dq0|+ supj≤k |Ej|. �

Exercise 4.1.9 Propagation of boundary error
Let dqk − dqk−1 = 0. Show that dqk = dq0, k = 1, . . . , N. �

4.1.3 Error in the temperatures

The error in the fluxes is in general of the same order as the error in the produc-
tion terms (see Exercise 4.1.8). Since we have approximated this term with one
point integration, we may expect an error of magnitude O(h2) in the fluxes, qk, for
smoothly varying step sizes. By the same reasoning as in Exercise 4.1.8 we may
now show, that the error in the temperatures remains O(h2), because if

−λT̃′(xk+1/2) = qk+1/2 +O(h2), (4.1.15)

the approximation with central differences also generates an O(h2) error term and
we get for the error dTk:

λk+1/2
dTk − dTk+1

hk+1
= Ek+1, (4.1.16)
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where Ek+1 = O(h2). Now defining the error in temperature dT in much the same
way as in Exercise 4.1.8 we can show that

|dTk| < |dTN |+ sup
j≥k

|Ej|/λj−1/2. (4.1.17)

However, by the right-hand-boundary condition we know that qN = α(TN − TR)
and that the numerical approximation to qN has an error of O(h2). Therefore
dTN = O(h2) and backsubstitution into inequality (4.1.17) proves the result.

4.2 The stationary diffusion equation in 2 dimensions

The Finite Volume approximation of the stationary diffusion equation in two di-
mensions is a straightforward generalization of the previous section. Let us con-
sider:

−div λ grad u = f , x ∈ Ω, (4.2.1a)

−λ
∂u

∂n
= α(u − u0), x ∈ Γ. (4.2.1b)

Both λ and f are functions of the coordinates x and y. In the boundary condition
the radiation coefficient α and the reference temperature u0 are known functions
of x and α > 0. We subdivide the region Ω into cells like in Figure (4.3). Usually

Figure 4.3: Subdivision of rectangular region into cells.

these cells are rectangles, but also quadrilaterals or even triangles are allowed.
In the literature one can find two ways of positioning the unknowns. The first
one is to place the unknowns in the nodes of the grid. This is called the vertex-
centered approach. The other one is to put the unknowns in the centers of the cells
(cell-centered). These methods only differ at the boundary of the domain. For the
moment we restrict ourselves to the vertex-centered method, and a rectangular
equidistant grid.
We use the same (i, j) notation for the nodes as in Chapter 3. In the literature a
node xij somewhere in the interior of Ω is also denoted by xC and the surround-
ing neighbors by their compass names in capitals: N, E, S, W. Cell quantities and
quantities in the cell edges are denoted with lower case subscripts: n, s, e, w. If
appropriate we shall also apply this notation. We construct a control volume with
edges half way between two nodes, like in Figure 4.4. We integrate the equation
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u uu

u

u

h

hy

x

i,j i+1,ji 1,j

i,j+1

i,j 1

Figure 4.4: Control volume for the Diffusion equation.

over the control volume to obtain:∫
V

−div λ grad u dV =
∫
V

f dV, (4.2.2a)

∮
Γ

−λ
∂u

∂n
dΓ =

∫
V

f dV. (4.2.2b)

Using central differences for ∂u
∂n and one point integration for the left-hand-side

edges and the right-hand-side volume we get the interior molecule:

− λi−1/2,jhy
ui−1,j − ui,j

hx
− λi,j−1/2hx

ui,j−1 − ui,j

hy
− λi+1/2,jhy

ui+1,j − ui,j

hx

− λi,j+1/2hx
ui,j+1 − ui,j

hy
= hxhy fi,j. (4.2.3)

Note that Equation (4.2.3) is identical to the finite difference Equation (3.4.2).

Exercise 4.2.1 Derive the finite volume discretization of (4.2.1) for non-equidistant step
sizes. �

Exercise 4.2.2 Apply the finite volume method to the convection-diffusion equation
with incompressible flow:

div (−ε(grad c) + cu) = 0, (4.2.4)

with ε and u constant. Show that the contribution of the convection term is non-symmetric.
�
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4.2.1 Boundary conditions

The treatment of boundary conditions is usually the most difficult part of the finite
volume method. Dirichlet boundary conditions are treated in the same way as
in 1D. The Robin boundary condition (4.2.1b) requires a special approach. For
simplicity we restrict ourselves to the east boundary. All other boundaries can
be dealt with in the same way. Since the nodes on the boundary correspond to
the unknown function u, it is necessary to define a control volume around these
points. The common approach is to take only the half part inside the domain as
sketched in Figure (4.5). Integration of the Laplacian equation (4.2.1a) over the

i,j

i,j+1

i,j 1

i 1,j

Figure 4.5: Control volume for the Robin boundary condition.

control volume gives Equation (4.2.2b). The integral over the west edge is treated
as for the internal points. The integral over the north and south edges are also

treated in the same way, however their length is multiplied by 1
2 . On the east edge

boundary condition (4.2.1b) is applied to get∫
Γe

−λ
∂u

∂n
dΓ =

∫
Γe

α(u − u0) dΓ. (4.2.5)

Discretization of (4.2.5) gives∫
Γe

α(u − u0) dΓ ≈ hyα(ui,j − u0). (4.2.6)

So the complete discretization for point ui,j at the boundary becomes

− λi−1/2,jhy
ui−1,j − ui,j

hx
− λi,j−1/2hx

ui,j−1 − ui,j

2hy
− λi,j+1/2hx

ui,j+1 − ui,j

2hy

+ hyαi,jui,j = hyαi,ju0 +
hxhy

2
fi,j. (4.2.7)

Exercise 4.2.3 Suppose we want to solve the diffusion equation (4.2.1a) over the square
Ω = (0, 1)× (0, 1). Let λ and f be periodic in x-direction. Assume that we have periodical
boundary conditions at the boundaries x = 0 and x = 1. Furthermore boundary condition
(4.2.1b) holds for the other two boundaries.

• Formulate the periodical boundary conditions at x = 0 and x = 1. Motivate why
the number of boundary conditions is correct.

• Derive the finite volume discretization of the equation at the periodical boundaries.
Use an equidistant grid with hx = hy.

�
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4.2.2 Boundary conditions in case of a cell centered method

If a cell centered method is applied, cells and control volumes coincide. All un-
knowns are positioned in the centers of the cells, which implies that there are no
unknowns on the boundary.

Exercise 4.2.4 Show that the discretization of Equation (4.2.1a) for all internal cells (which
have a common edge with the boundary), is given by Equation (4.2.3). �

The absence of unknowns on the boundary has its effect on the treatment of
boundary conditions. Neumann boundary conditions of the type

−λ
∂u

∂n
= g at Γ, (4.2.8)

are the most easy to implement since (4.2.8) can be substituted immediately in the
boundary integrals.

Exercise 4.2.5 Derive the discretization for a boundary cell with boundary condition (4.2.8).
�

In case of a Dirichlet boundary condition u = g2 on the south boundary, it is
necessary to introduce a virtual point i, j − 1 like in Figure 3.15. The value of ui,j−1

can be expressed in ui,j and the boundary value ui,j−1/2 using linear extrapolation.
Substitution in the 5-point molecule results in a 4-point stencil.

Exercise 4.2.6 Derive the discretization of Equation (4.2.1a) in a cell adjacent to the
Dirichlet boundary. �

The Robin boundary condition (4.2.1b) is the most difficult to treat. On the bound-
ary we have to evaluate the integral∫

Γ

α(u − u0) dΓ. (4.2.9)

u is unknown, and not present on the boundary either. In order to keep the second
order accuracy, the best way is express u using linear extrapolation from two inter-
nal points. Consider for example the south boundary in Figure 4.6. We can express

i 1,j i,j

i,j+1

i,j 1/2

i+1,j

Figure 4.6: Control volume for the cell-centered Robin boundary condition.

uB in uC and uN using linear extrapolation, resulting again in a 4-point molecule.

Exercise 4.2.7 Derive the 4-point molecule. �

4.2.3 Boundary cells in case of a skewed boundary

The best way to treat a skewed boundary is to make sure, that control volume ver-
tices fall on the boundary. This leads to triangle shaped grid-cells at the boundary,
see Figure 4.7. Integration over the triangle and substitution of central differences
give with the notations of Figure 4.7:

−βWuW − βSuS + (βW + βS)uC +
∫

hyp

−λ
∂u

∂n
dΓ =

1

2
hxhy fC, (4.2.10)
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Figure 4.7: Boundary cell.

where the integral has to be taken over the hypotenuse of the triangle. Writing hh

for the length of the hypotenuse and substituting the boundary condition we get:

−βWuW − βSuS + (βW + βS + αhh)uC = αhhu0C +
1

2
hxhy fC. (4.2.11)

Remark 4.2.1 (Symmetry and diagonal dominance)

1. The discretization matrix generated by the FVM is symmetric.

2. The numerical approximation of Problem 4.2.1 with the FVM leads to a diagonally
dominant Z-matrix.

Exercise 4.2.8 Prove the first statement in Remark 4.2.1. (Hint: across a volume edge
between, say, volumes Vi+1,j and Vi,j the flux is approximated in the same way for the
equations of ui+1,j and ui,j). �

Exercise 4.2.9 Prove the second statement of Remark 4.2.1. �

Theorem 4.2.1 Consider the Finite Volume discretization in this section of equations
(4.2.1). If f ≥ 0, for x ∈ Ω and u0 ≥ 0, for x ∈ Γ, then the solution of the discrete
problem is positive.

Exercise 4.2.10 Prove Theorem 4.2.1. (Hint: use the second statement of Remark 4.2.1.)
�

Theorem 4.2.2 Consider the Finite Volume discretization in this section of equations
(4.2.1). The solution of the discrete problem with f = 0 has a maximum and minimum at
the boundary.

Exercise 4.2.11 Prove Theorem 4.2.2. (Hint: use the second statement of Remark 4.2.1.)
�

If the boundary is curved, then the discretization with a rectangular Cartesian grid
is toilsome. An alternative could be to introduce boundary fitted coordinates.
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4.2.4 Error considerations in the interior

We shall not go into great detail in error analysis, but indicate sources of error. We
started out by integrating the conservation law of the flux vector exactly:

Φw + Φn + Φe + Φs =
∫
V

f dV, (4.2.12)

where Φ stands for the net outflow through that particular edge of the control
volume. After that we made a number of approximations:

1. Approximate integrals over the sides by one point integration. O(h2) accu-
rate for smoothly changing step sizes, otherwise O(h).

2. Approximate derivatives by central differences. O(h2) accurate for smoothly
changing step sizes otherwise O(h).

3. Approximate the right-hand side by one point integration. O(h2) accurate
for smoothly changing step sizes otherwise O(h).

It gets monotonous. From finite difference approximations we already know, that
equidistant step sizes lead to overall O(h2) accuracy. So what are smoothly varying
step sizes? Roughly speaking it says, that between neighboring step sizes there
may be a factor 1 + O(h). This still gives pretty much leeway in stretching grids,
so that should not be regarded as too restrictive.

4.2.5 Error considerations at the boundary

At the boundary one point integration of the right-hand side is always O(h), be-
cause the integration point has to be the gravicenter for order O(h2) accuracy,
whereas the integration point is always on the edge. (Note that in fact the absolute
magnitude of the error is O(h3), but that is because the volume of integration is
itself O(h2).)

So the situation looks grim, but in fact there is nothing that should worry us.
And that is because of the following phenomenon: for the solution u of the discrete
equations with f = 0, we have

‖u‖∞ ≤ sup
x∈Γ

|u0|. (4.2.13)

Exercise 4.2.12 Prove Inequality (4.2.13). Use the results of Exercises 4.2.9 sseq. �

Exercise 4.2.13 Prove that if ũ0 = u0 + ε0 the perturbation ε in the solution of the ho-
mogeneous discrete problem is less than sup |ε0| for all components of ε. (Hint: subtract
the equations and boundary conditions of u and ũ to obtain an equation and boundary
condition for ε. Then use (4.2.13)) �

From all this we see, that a perturbation of O(h3) in the right-hand side of equa-
tions for the boundary cells leads to an error of O(h2) in the solution. But one point
integration of the right-hand side also gives a perturbation of O(h3). So the effect
on the solution should also be no worse than O(h2).

4.3 Laplacian in general coordinates

4.3.1 Discrete transformation from Cartesian to General coordi-
nates

Consider a region in the x-y-plane as in Figure 4.8 that we want to transform into
a rectangular region in the ξ-η-plane. We assume that there is a formal mapping
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Figure 4.8: General region transformation.

x(ξ, η) and y(ξ, η) and its inverse ξ(x, y) and η(x, y) exists. Coordinate lines in
the ξ-η-plane transform to the curves x(ξ0, η) and x(ξ, η0) respectively. Such a
transformation is called regular if it has an inverse, otherwise it is singular. Suffi-
cient conditions for regularity is, that the Jacobian exists and is non-singular. The
quantities needed to calculate the transformations are the derivatives of the trans-
formation matrices:

J =

(
xξ xη

yξ yη

)
(4.3.1)

and its inverse

J−1 =

(
ξx ξy

ηx ηy

)
. (4.3.2)

Usually the mapping is only known in the cell vertices. This means that we do not
have an analytical expression for the derivatives and we must compute them by
finite differences. Unfortunately not all derivatives are easily available. Take a look
at a cell in the ξ-η-plane (Figure 4.9): Given the configuration in Figure 4.9, central

i+1,j+1

i+1,jx    y
ξ ξ

x yη η

i, j+1

i, j

Figure 4.9: One cell with natural place of coordinate derivatives.

differences can be applied to compute xξ and yξ at the midpoints of the horizontal
cell boundaries. Analogously, central differences are applied to compute xη and yη

at the vertical cell boundaries. Everything else has to be computed by averaging
over the neighbors. The quantities ξx, ξy etcetera have to be calculated by inverting
J.

Exercise 4.3.1 Explain how to express xξ , xη, yξ , yη in the cell center in the ξη−plane (see
Figure 4.9) in the cell coordinates in the xy−plane. Explain how to calculate ξx, ξy, ηx and
ηy. �
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In the Finite Volume Method, we consider integration of a function, or of a dif-
ferential expression. If a regular transformation is applied from (x, y) to (ξ, η),
then the Jacobian enters the picture. Suppose that we integrate over a domain Ω

that is defined in the (x, y)-space, and suppose that Ω is mapped onto Ω in the
(ξ, η)-space, then, from Calculus, it follows∫

Ωxy

f (x, y)dΩxy =
∫

Ωξη

f (x(ξ, η), y(ξ, η))| ∂(x, y)

∂(ξ, η)
|dΩξη, (4.3.3)

where the Jacobian is defined by

| ∂(x, y)

∂(ξ, η)
| = |det(J)|,

which is expressed in the co-ordinate framework (ξ, η). We use the notation dΩxy

and dΩξη to emphasize that the integral is in the (x, y) and (ξ, η) framework re-
spectively. For the derivation of this procedure, we refer to a textbook on Calculus,
like Steward, Adam or Almering. This procedure is applied in general to all inte-
grals that are involved in the Finite Volume discretization. We will illustrate how
the finite volume method works in a polar co-ordinate system.

4.3.2 An example of finite volume integration in polar co-ordinates

We will consider an example on a cut piece of cake, on which Poisson’s equation
is imposed

−div grad u = f (x, y), on Ω, (4.3.4)

where Ω is described in polar co-ordinates by

Ωrθ = {(r, θ) ∈ R2 : 1 < r < 3, 0 < θ < π/4}.

To solve the above equation by Finite Volumes, the equation is integrated over a
control volume V, to obtain

−
∫
V

div grad udΩxy =
∫
V

f (x, y)dΩxy. (4.3.5)

From Equation (3.7.9), we know that the above PDE (4.3.4) is transformed into

−
(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
= f (rcosθ, rsinθ). (4.3.6)

Note that Ωrθ is a rectangular domain in the (r, θ)- co-ordinate framework. The
Jacobian of the transformation from Cartesian co-ordinates to polar co-ordinates is
given by

|∂(x, y)

∂(r, θ)
| = r. (4.3.7)

Exercise 4.3.2 Prove the above formula. �

Next, we integrate the transformed PDE (4.3.6) over the transformed control
volume, which is rectangular and hence much easier to work with, to get

∫
V

−
(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
rdΩrθ =

∫
V

f (rcosθ, rsinθ)rdΩrθ . (4.3.8)
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Note that the Jacobian has been implemented on both sides of the above equation.
The integral of the left-hand side of the above equation can be worked out such
that ∫

V

− ∂

∂r

(
r

∂u

∂r

)
− 1

r

∂2u

∂θ2
dΩrθ = −

∫
V

(
∂

∂r
,

∂

∂θ
) · (r ∂u

∂r
,

1

r

∂u

∂θ
)dΩrθ. (4.3.9)

The integrand in the right-hand side of the above equation, consists of an inner
product of the Divergence operator and a vector field. Both vectors are in the (r, θ)
frame. The domain over which the integral is determined is closed and hence
the Divergence Theorem can be applied in this volume with piecewise straight
boundaries. This implies that equation (4.3.8) can be written as

−
∫

δV

(nr, nθ) · (r ∂u

∂r
,

1

r

∂u

∂θ
)dΓ =

∫
V

f (rcosθ, rsinθ)rdΩrθ . (4.3.10)

This equation contains a volume integral with the function f over a control volume
and a line integral related to the Laplacian over the boundary of the control vol-
ume. The treatment of both integrals is analogous to the Cartesian case: Consider
the control volume, with length Δr and Δθ, around C, with co-ordinates (rC, θC) in
Figure 4.10. The integral at the right-hand side in the above equation is approxi-
mated by ∫

V

f (rcosθ, rsinθ)rdΩrθ ≈ f (rC, θC)rCΔrΔθ. (4.3.11)

The boundary integral is obtained by the sum of the approximations of integrals
over all the boundary segments. Substitution of these approximations into (4.3.10),
gives the final result for an internal control volume:

1

rC

uS − uC

Δθ
Δr+ re

uE − uC

Δr
Δθ +

1

rC

uN − uC

Δθ
Δr+ rw

uW − uC

Δr
Δθ = f (rC, θC)rCΔrΔθ.

(4.3.12)

C EW

NNW NE

SSW SE

s
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w e

nw ne

sw se

Figure 4.10: General control volume.
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4.3.3 Boundary conditions

Boundary conditions of Dirichlet type do not present any problem, so we shall
turn our attention to radiation boundary conditions of the form

∂u

∂n
= α(u0 − u).

From an implementation point of view, it is easiest to take the nodal points
on the boundary, which gives us a half cell control volume at the boundary like in
Figure 4.11. Integrating over the half volume and applying the divergence theorem

u

u

C

W

S
u

Figure 4.11: Boundary cell.

we get:

1

rC

uS − uC

Δθ

Δr

2
+ rCα(u0 −uC)Δθ +

1

rC

uN − uC

Δθ

Δr

2
+ rw

uW − uC

Δr
Δθ = f (rC, θC)rCΔr

Δθ

2
,

(4.3.13)
where the radiation boundary condition has been substituted into the boundary
integral of the right (east) boundary of the control volume.

4.3.4 Error analysis

We did a comparable error analysis of the Laplace equation in Cartesian coordi-
nates in Section 4.2.5. Consider the one point integration of the boundary volume
on the right-hand side: ∫

V

√
g f dV =

1

2
h2(

√
g f )C +O(h3), (4.3.14)

as you can simply verify by Taylor expansion. So this ”inaccurate” integration of
the right-hand side gives a perturbation of O(h3) in the approximated right-hand
side. The same is true for the integrations along n and s sides, because they integrate
the same integrand and are subtracted from each other.

Theorem 4.3.1 For sufficiently smooth f

x+h∫
x

f (x, y + h)− f (x, y)dx = h( f (x, y + h)− f (x, y)) +O(h3). (4.3.15)

Proof
Let F(x, y) be such, that Fx(x, y) = f (x, y), then apparently

x+h∫
x

f (x, y + h)− f (x, y)dx = F(x + h, y + h)− F(x, y + h)− F(x + h, y) + F(x, y).

(4.3.16)
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Now by Taylors theorem:

F(x + h, y + h) = F(x, y + h) + h f (x, y + h) +
h2

2
fx(x, y + h) + O(h3), (4.3.17a)

F(x + h, y) = F(x, y) + h f (x, y) +
h2

2
fx(x, y) + O(h3). (4.3.17b)

Subtracting the two equations in (4.3.17) we get:

x+h∫
x

f (x, y+ h)− f (x, y)dx = h( f (x, y+ h)− f (x, y))+
h2

2
( fx(x, y+ h)− fx(x, y))+O(h3).

(4.3.18)
From the mean value theorem we note that fx(x, y + h)− fx(x, y) = O(h) and the
result follows. �

So all ”inaccurate” integrations produce an O(h3) perturbation in the right-
hand side. And now we use the same argument as in Section 4.2.5. The perturba-
tion in the solution of the homogeneous Laplacian is always less than the pertur-
bation in the boundary condition. But a perturbation of O(h3) in the right-hand
side of a boundary volume equation is equivalent to an O(h2) perturbation in the
boundary condition, hence causes an O(h2) perturbation in the solution. Because
we no longer have the discrete maximum principle at our disposal it is not so easy
to formally prove this assertion. But the least we can say is, that if our discrete
solution converges to the solution of the continuous problem it is O(h2) accurate,
because we do have a maximum principle for the continuous problem.

4.4 Finite volumes on two component fields

We shall show an example of application of the FVM on a two component field. We
recall the problem for planar stress from Section 2.4.4. We consider a rectangular
plate fixed at the sides ABC and subject to a body force b inside Ω = ABCD and
boundary stresses t at the two free sides CDA. See Figure 4.12 The equation for the
stresses are:

∂σxx

∂x
+

∂τxy

∂y
+ b1 = 0, (4.4.1a)

∂τxy

∂x
+

∂σyy

∂y
+ b2 = 0, (4.4.1b)

We integrate the first equation over a control volume V1 and the second one over
a control volume V2. We define

sx =

(
σxx

τxy

)
and sy =

(
τxy

σyy

)
. (4.4.2)

After application of Gauss’ divergence theorem we obtain:∮
Γ1

sx · n dΓ +
∫
V1

b1 dV = 0, (4.4.3a)

∮
Γ2

sy · n dΓ +
∫
V2

b2 dV = 0, (4.4.3b)
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A

B C

D

Ω

Figure 4.12: Square plate.

or ∫
e1

σxx dy −
∫

w1

σxx dy +
∫
n1

τxy dx −
∫
s1

τxydx = −hxhyb1, (4.4.4a)

∫
e2

τxy dy −
∫

w2

τxy dy +
∫
n2

σyy dx −
∫
s2

σyydx = −hxhyb2. (4.4.4b)

It is not self evident, that the control volumes for the two force components should
be the same for Equation (4.4.4a) as for Equation (4.4.4b) and in fact we shall see
that a very natural choice will make them different.

4.4.1 Staggered grids

We apply the finite volume method with volume V1 to Equation (4.4.4a) and we
express the stress tensor components in the displacements u and v. In e1 we now
need to have ux and vy, so in fact we would like to have uE, uC, vne and vse in order
to make compact central differences around e1. Checking the rest of the sides of
V1 makes it clear, that we need: uE, uS, uW , uN , uC and vne, vnw, vsw, vse, see Figure
4.13.

Exercise 4.4.1 Derive the discretization in the displacement variables u and v for Equa-
tion (4.4.4a) in the V1 volume. �

When we apply FVM with volume V2 to Equation (4.4.4b) we need uy and vx in e2,
so now we would like to have vE, vC, une and use.

Exercise 4.4.2 Derive the discretization in the displacement variables u and v for Equa-
tion (4.4.4b) in the V2 volume. �

So apparently we must choose a grid in such a way that both V1 and V2 can be
accommodated and the natural way to do that is take u and v in different nodal
points, like in Figure 4.14.
Such an arrangement of nodal point is called a staggered grid. This means that in
general different problem variables reside in different nodes.
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V1

u points

v points

Figure 4.13: V1-variables.

Figure 4.14: Staggered grid.

4.4.2 Boundary conditions

When discretizing a scalar equation you can often choose the grid in such a fash-
ion, that the boundary conditions can be easily implemented. With two or more
components especially on a staggered grid this is no longer true.

Consider the W boundary of our fixed plate in Figure 4.12. On this boundary
we have the boundary conditions u = 0 and v = 0. A quick look at the staggered
grid of Figure 4.14 shows a fly in the ointment. The u-points are on the bound-
ary all right. Let us distinguish between equations derived from Equation (4.4.4a)
(type 1) and those derived from Equation (4.4.4b) (type 2). In equations of type
1 you can easily implement the boundary conditions on the W-boundary. By the
same token, you can easily implement the boundary condition on the N-boundary
in type 2 equations. For equations of the ”wrong” type you have to resort to a trick.
The generic form of an equation of type 2 in the displacement variables is:

BWvW + Bnwunw + BNvN + Bneune + BEve + Bseuse + BSvS + Bswusw + BCvC = h2bC.
(4.4.5)

To implement the boundary condition on the W-side in equations of type 2, we
assume a virtual (”ghost”) grid point on the other side of the wall acting as W-
point, see Figure 4.15

Now we eliminate vW by linear interpolation: (vW + vC)/2 = 0, hence vW =
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Figure 4.15: Ghost point.

−vC and Equation (4.4.5) transforms into

Bnwunw + BNvN + Bneune + BEve + Bseuse + BSvS + Bswusw + (BC − BW)vC = h2bC.
(4.4.6)

Exercise 4.4.3 Explain how to implement the boundary condition on the N-boundary in
equations of type 1. �

The boundary conditions on the E- and S boundary are natural boundary condi-
tions. When a boundary of a full volume coincides with such a boundary, there are
no problems, the boundary condition can be substituted directly. That is equations
of type 2 are easy at the E-boundary, equations of type 1 are easy at the S-boundary.

Exercise 4.4.4 Derive the equation of type 1 at the S-boundary in the displacements and
substitute the natural boundary condition. �

What of the half volumes? Consider an equation of type 1 at the E-boundary.
(Figure 4.16)

Let us integrate Equation (4.4.1a) over a half volume V1 to obtain:

h(−sxxw + sxxC) +
1

2
h(τxyn − τxys) = −1

2
h2b1C (4.4.7)

Since by the natural boundary conditions sxx = f1 and τxy = f2 are given quanti-
ties at the boundary this transforms into

hsxxW = h f1C +
1

2
h( f2n − f2s)) +

1

2
h2b1C. (4.4.8)

Again one point integration of the right-hand side causes a perturbation of O(h3),
because it is not in the gravicenter of the volume, and also the integration along
the n- and s-sides of the volume has an error of O(h3).

Exercise 4.4.5 Prove these last two assertions. Compare your results with Section 4.3.4
�

Since this perturbation is of the same order as a perturbation of O(h2) in the stresses
applied at the boundary, we may expect that this gives a perturbation of the same
order in the displacements u and v.
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Figure 4.16: Half volume at natural boundary.

4.5 Project: Stokes equations for incompressible flow

A fairly simple and admittedly artificial model for stationary viscous incompress-
ible flow is represented by the Stokes Equations:

−div μ grad u +
∂p

∂x
= 0 (4.5.1a)

−div μ grad v +
∂p

∂y
= 0 (4.5.1b)

∂u

∂x
+

∂v

∂y
= 0 (4.5.1c)

In these equations the first two ones describe the equilibrium of the viscous stresses,
the third equation is the incompressibility condition. The viscosity μ is a given ma-
terial constant, but the velocities u and v and the pressure p have to be calculated.
Let us consider this problem in a straight channel (see Figure 4.17).

u=0,v=0

u=0,v=0

ou
tle

t

in
le

t

Figure 4.17: Channel for Stokes flow.

At the inlet the velocities are given: u = u0(y), v = v0(y), the channel walls allow
no slip, so u = 0 and v = 0 at both walls. At the outlet there is a reference pressure

p0 in the natural boundary conditions: −μ ∂u
∂x + p = p0 and ∂v

∂x = 0.

To solve the equations, we use a staggered approach, in which the unknowns
are ordered as in Figure 4.18. For the horizontal component of the velocity u, the
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Figure 4.18: The ordering of the unknowns in a staggered approach for the Stokes
equations. The solid circles and squares respectively correspond to u and v indicat-
ing the horizontal and vertical components of the fluid velocity. The open circles
denote the pressure nodes.

finite volume method gives

−
∫

Ωu

∇ · (μ∇u)dΩ +
∫

Ωu

∂p

∂x
dΩ = 0, (4.5.2)

where Ωu is a control volume with a u-node as the center. The Divergence Theorem
yields

−
∫
Γu

μ
∂u

∂n
dΓ +

∫
Γu

pnxdΓ = 0. (4.5.3)

This equation is discretized by similar procedures as the Laplace equation. Note
that nx represents the horizontal component of the unit outward normal vector.
The equation for the vertical component of the velocity is worked out similarly, to
get

−
∫
Γv

μ
∂v

∂n
dΓ +

∫
Γv

pnydΓ = 0. (4.5.4)

Subsequently, we consider the continuity equation div u = 0. This equation is
discretized using a control volume with a pressure node as the center:∫

Ωp

div udΓ =
∫
Γp

u · ndΓ. (4.5.5)

For the implementation of the outlet condition −μ ∂u
∂x + p = p0, we use half a

cell over a u-node, in which the integral over the right (east) boundary is given by∫
δΩR

u

(
−μ

∂u

∂x
+ pnx

)
dΓ =

∫
ΓR

u

p0dΓ ≈ p0h.
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Exercise 4.5.1 Derive discrete equations for all three volumes Ωu, Ωv and Ωp. Note that
the pressure and equation of continuity are coupled, that is, the continuity equation is
integrated over a pressure cell. �

Exercise 4.5.2 Explain how the no slip boundary conditions are implemented in the equa-
tions (Hint: Use ghost points and averaging in the spirit of Section 4.4.2.). �

Exercise 4.5.3 Explain how to implement the inlet boundary conditions. �

Exercise 4.5.4 Take care to end in a vertical line with u points at the outlet. Now explain
how to implement the outlet boundary conditions. Argue why you ended up with as many
equations as unknowns. �

Exercise 4.5.5 In the half Ωu volume at the outlet boundary the one point integrations
over the horizontal edges cause an error of O(h3). Show this and argue, that this is equiv-
alent to a perturbation of O(h2) in the reference pressure p0. �

4.6 Summary of Chapter 4.

We have learned a new way to discretize: the Finite Volume Method, especially
suited to conservation laws. We have seen a one dimensional and a two dimen-
sional example with non equidistant stepsizes and radiation boundary conditions.
Despite the fact, that at the boundary the accurate midpoint integration rule was
replaced by less accurate one point integration we have shown or made plausible
that that would not affect the overall accuracy of the solution. We concluded the
chapter with extensive treatment of the Laplacian in curvilinear coordinates and
an example of the two component problem of planar stress. We have seen, that for
problems of that kind it is sometimes useful to take the variables in different node
points: staggered grids.





Chapter 5

Minimization problems in
physics

Objectives

In Chapter 1 we have seen that many physical partial differential equations (PDEs)
are the result of conservation laws. A completely different way to derive PDEs
is by minimizing an integral. Examples of this approach are: shortest path and
minimal potential energy. In this chapter we shall show how to derive a PDE with
corresponding boundary conditions starting from a minimization problem.

On the other hand it is possible, under certain conditions, to derive a minimization
problem, that in some sense is equivalent to a given PDE. If the PDE has a solution
in the classical sense, solution of the minimization problem means also solution of
the corresponding PDE and vice versa.

Minimization problems usually admit a larger solution class than a PDE formula-
tion and therefore the solution of the minimization problem is referred to as gener-
alized solution of the PDE. A similar formulation is possible for problems that do
not fit the minimization frame work. This formulation, the weak formulation will be
treated in Chapter 7. It will be shown that this formulation may be considered as
a kind of conservation law.

5.1 Introduction

Mathematical models in physics are often derived from conservation laws (see
Section 1.3.5), but also from minimization problems (Section 1.4). In this chapter
we shall focus on the latter category.

Before analyzing these minimization problems in general, we shall start with the
simple example of minimum potential energy, already treated in Section 1.4.1.

5.1.1 Minimal potential energy

In Section 1.4.1 we have seen that the potential energy of an elastic string fixed in
(0, 0) and (0, 1) with a given load is defined by

1∫
0

{
1

2
k

(
du

dx

)2

− u f

}
dx . (5.1.1)
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Hence the displacement u minimizes the integral (5.1.1) under the conditions:

u(0) = 0 , u(1) = 0 .

We shall consider a slightly more general minimization problem:

Find the function u that minimizes I(u) defined by (5.1.1) such that

u(0) = u0 . (5.1.2)

In the remainder of this chapter we shall always assume that u is sufficiently
smooth, which means that implicitly we suppose that all expressions we use and
operations we apply are allowed. Later on we shall specify this more precisely.

In Section 5.4 we shall give a number of often classical examples of minimization
problems.

The minimization problem (5.1.1), (5.1.2) is different from standard minimization
problems in the sense that we have to find a continuous function instead of a fi-
nite set of parameters. In fact we may consider this as a problem with an infinite
number of unknowns.

5.1.2 Derivation of the differential equation

In order to show that the solution of the minimization problem satisfies a certain
differential equation we use a reasoning due to Euler.
We suppose that (5.1.1) with boundary condition (5.1.2) has a smooth solution,
which we call û(x). We consider a class of functions u(x) defined as

u(x) = û(x) + εη(x) . (5.1.3)

(5.1.3) will be referred to as a variation around û(x).

ε is a variable parameter and η is some arbitrary but fixed function. Since both
û(x) and u(x) must satisfy the boundary condition (5.1.2) it is necessary that

η(0) = 0 . (5.1.4)

Also η is assumed to be sufficiently smooth.
Substitution of (5.1.3) in (5.1.1) gives

I(û + εη) =

1∫
0

{
1

2
k

(
d(û + εη)

dx

)2

− (û + εη) f

}
dx , (5.1.5)

under the conditions (5.1.2) and (5.1.4).

I is a function of ε only (why?), and according to the classical theory of minimiza-
tion problems, a necessary condition for the existence of an extreme is

dI

dε
= 0 , (5.1.6)

hence
1∫

0

{
k

d(û + εη)

dx

dη

dx
− η f

}
dx = 0 . (5.1.7)

Exercise 5.1.1 Show that Equation (5.1.7) follows from (5.1.5) and (5.1.6) �
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From (5.1.3) it is clear that I(ε) reaches its minimum for ε = 0, hence (5.1.7) reduces
to

1∫
0

{
k

dû

dx

dη

dx
− η f

}
dx = 0 ,

û(0) = u0 , η(0) = 0 .

(5.1.8)

Since η(x) is an arbitrary function, (5.1.8) must be valid for any η satisfying (5.1.4).

Unfortunately we see in (5.1.8) both η and
dη
dx in the integral. In order to get an

expression in η only, we apply integration by parts to the first term. This results in

1∫
0

{
−η

d

dx

(
k

dû

dx

)
− η f

}
dx + ηk

dû

dx

∣∣∣∣1
0

= 0 . (5.1.9)

Due to the boundary condition (5.1.4) this reduces to:

1∫
0

η

(
− d

dx

(
k

dû

dx

)
− f

)
dx + η(1)k(1)

dû

dx
(1) = 0 . (5.1.10)

(5.1.10) must be valid for all η(x) with η(0) = 0. Let us first consider the subset
that also satisfies η(0) = η(1) = 0. Now (5.1.10) reduces to

1∫
0

η

(
− d

dx

(
k

dû

dx

)
− f

)
dx = 0 , (5.1.11)

for all η with η(0) = η(1) = 0.

Hence the solution û(x) must satisfy the differential equation (using Lemma of
Dubois-Reymond 5.2.2)

− d

dx

(
k

du

dx

)
= f , (5.1.12)

with boundary condition u(0) = u0.

(We shall show this more rigorously in Section 5.2).

(5.1.12) is a second order linear differential equation. So we need two boundary
conditions in order to get a unique solution. To that end we consider the complete
class of functions η(x), with η(0) = 0. Substituting (5.1.12) in (5.1.10) gives:

η(1)k(1)
dû

dx
(1) = 0 , (5.1.13)

with η(1) arbitrary.

Hence, we arrive at

k(1)
du

dx
(1) = 0 , (5.1.14)

which is our second boundary condition.

So we started with the minimization problem (5.1.1) with one boundary condition
(5.1.2) and we showed that the solution must satisfy the second order differen-
tial equation (5.1.12) with two boundary conditions (5.1.2) and (5.1.14). Appar-
ently boundary condition (5.1.14) is hidden in the minimization problem. Such a
boundary condition, that is not imposed explicitly, is called a natural boundary con-
dition. Boundary condition (5.1.2), which must be satisfied both by the minimiza-
tion problem and the differential equation is called an essential boundary condition.
It limits the class in which to look for a solution.

In the next section we shall consider a more general problem in one dimension.
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5.2 A general one-dimensional problem with first or-

der derivatives

In the previous section we have seen how one can derive a differential equation
from a minimization problem. In this section we consider a general minimization
in 1-d with first order derivatives.

Theorem 5.2.1

Let f (x, u, p) be a sufficiently smooth function.

Consider the minimization problem

min
u

l(u) = min
u

x1∫
x0

f (x, u, u
′
) dx , (5.2.1)

with boundary condition
u(x0) = u0 . (5.2.2)

u
′

is a short notation for du
dx .

If a solution û of problem (5.2.1), (5.2.2) exists, then this solution must satisfy the differ-
ential equation

∂ f

∂u
− d

dx

∂ f

∂u
′ = 0 , (5.2.3)

with boundary conditions
û(x0) = u0 (essential) , (5.2.4)

and
∂ f

∂u
′ (x1) = 0 (natural) . (5.2.5)

REMARK: with
∂ f

∂u
′ we mean: differentiate f (x, u, p) to p and substitute du

dx for p.

Proof
Consider the following family of curves around the solution û(x):

u(x) = û(x) + εη(x) , (5.2.6)

with ε an arbitrary parameter and η(x) an arbitrary, sufficiently smooth curve sat-
isfying η(x0) = 0.

Substitution of (5.2.6) in (5.2.1) gives

l(u) =

x1∫
x0

f (x, û + εη(x), û
′
+ εη

′
(x)) dx . (5.2.7)

The integral in (5.2.7) is a function of ε denoted by I(ε).
I(ε) is minimal for u = û(x), hence ε = 0.
A necessary condition for the existence of a minimum in ε = 0 is

dI(ε)

dε

∣∣∣∣
ε=0

= 0 , (5.2.8)

or
x1∫

x0

{
∂ f

∂u

(
x, û, û

′)
η(x) +

∂ f

∂u
′ (x, û, û

′
)η

′
}

dx = 0 . (5.2.9)
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Integration by parts of the last term results in

x1∫
x0

[
∂ f

∂u
− d

dx

∂ f

∂u
′

]
η(x) dx +

[
η(x)

∂ f

∂u
′

]x1

x0

= 0 . (5.2.10)

η(x) is an arbitrary smooth function with η(x0) = 0 . We first restrict ourselves to
the subset of functions that also satisfy η(x1) = 0. Then according to the Lemma
of Dubois-Reymond, (lemma 5.2.2) it follows that û satisfies differential equation
(5.2.3).

Subsequently we consider the complete set of functions η(x). It is clear that natural
boundary condition (5.2.5) must be satisfied. �

REMARK:
Differential equations that follow in this way from a minimization problem are
known as Euler-Lagrange equations.

Lemma 5.2.2 (Dubois-Reymond)

Let M(x) ∈ C([a, b]) and let

b∫
a

M(x)η(x) dx = 0 , (5.2.11)

for all η(x) ∈ C([a, b]) with η(a) = η(b) = 0.

Then
M(x) = 0 on [a, b] . (5.2.12)

Proof
Suppose there is an x0 ∈ (a, b) such that M(x0) �= 0, for example M(x0) > 0. Since
M(x) ∈ C(a, b) there exists a δ-neighborhood of x0, (x0 − δ, x0 + δ) ⊂ (a, b) such
that M(x) > 0 if |x − x0| < δ, (δ > 0).

Now choose η(x) as follows

η(x) =

{
(x − x0 − δ)2(x − x0 + δ)2 if |x − x0| < δ

0 elsewhere,

then
b∫
a

M(x)η(x) dx =
x0+δ∫

x0−δ

M(x)(x − x0 − δ)2(x − x0 + δ)2 dx > 0 .

This contradicts (5.2.11) for x ∈ (a, b).
So from the continuity of M(x) it follows that M(x) = 0 for x ∈ [a, b]. �

In the next section we shall extend the Euler Lagrange equations to R
2.

5.3 A simple two-dimensional case

We have seen how the Euler-Lagrange equations are derived in one dimension.
Now we shall extend the theory to two dimensions. First we shall consider a sim-
ple two-dimensional example. It will be shown that the only difference with R1 is
that the integration by parts is replaced by Gauss’ divergence theorem.

Consider a region Ω (Figure 5.1) in R
2. The boundary Γ is subdivided into 2 parts

Γ1 and Γ2.
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Γ

Γ

1

2

Figure 5.1: Region Ω with 2 boundary parts Γ1 and Γ2.

On Ω we consider the following minimization problem:
minimize the integral

I(u) =
∫
Ω

{ k

2
|∇u|2 − u f} dΩ −

∫
Γ2

u dΓ , (5.3.1)

over the class of functions satisfying the boundary condition

u|Γ1
= 0 , (5.3.2)

with (k : Ω → R+).
With |∇u|2 we mean ∇u · ∇u.
To derive the Euler-Lagrange equations we proceed in exactly the same way as in
R1.

So let û(x, y) be the function minimizing (5.3.1), (5.3.2) and consider the set of
functions

u(x) = û(x) + εη(x) . (5.3.3)

Substitution of (5.3.3) in (5.3.1) gives

I(ε) =
∫
Ω

{ k

2
|∇(û + εη)|2 − (û + εη) f} dΩ −

∫
Γ2

(û + εη) dΓ . (5.3.4)

So the necessary condition for the existence of a minimum of (5.3.4) at ε = 0 is
given by: ∫

Ω

{k(∇û · ∇η)− η f} dΩ −
∫
Γ2

η dΓ = 0 . (5.3.5)

Exercise 5.3.1 Derive formula (5.3.5) �

In order to apply the two-dimensional version of the Lemma of Dubois-Reymond
it is necessary to remove the term ∇η.

Instead of classical integration by parts we use Gauss’ divergence theorem (1.3.10):∫
Ω

div w dΩ =
∮
Γ

w · n dΓ .

By substituting w = η(k∇û) we get∫
Ω

∇η · (k∇û) dΩ = −
∫
Ω

ηdiv (k∇û) dΩ +
∮
Γ

ηk∇û · n dΓ . (5.3.6)

REMARK: This is in fact the first equation of Green (see Exercise 1.3.8) .



5. Minimization problems in physics 81

Exercise 5.3.2 Derive Equation (5.3.6). �

A combination of (5.3.5) and (5.3.6) results in∫
Ω

{−div (k∇û)− f}η dΩ +
∫
Γ2

(k∇û · n − 1)η dΓ = 0 . (5.3.7)

(Why?)

The two dimensional version of Dubois-Reymond’s lemma leads to the PDE

−div (k∇û) = f , (5.3.8)

with boundary conditions,

u|Γ1
= 0 , (essential) (5.3.9)

and

k
∂u

∂n

∣∣∣∣
Γ2

= 1 . (natural) (5.3.10)

The technique applied here can also be used to solve a more general problem.
This is done in Section 5.5. Before doing so we give a number of examples of
minimization problems.

Exercise 5.3.3 Prove Dubois-Reymond’s lemma for a bounded region in two dimensions.
�

5.4 Examples of minimization problems

In this section we consider the following examples of minimization problems:

- Minimal surface problem, Section 5.4.1.

- Minimal potential energy, Section 5.4.2. This problem corresponds to a sim-
ple Poisson equation and is very suitable to demonstrate numerical tech-
niques.

- Plane stress, Section 5.4.3. This is also a minimum potential energy problem,
however, now we have an unknown vector instead of a scalar. As a conse-
quence the corresponding PDE consists of a set of 2 (R2) or 3 (R3) coupled
PDEs.

- Loaded and clamped plate (normal load), Section 5.4.4.
Here we have a minimum potential energy problem involving second order
derivatives. The corresponding PDE is of order four (Biharmonic equation).

5.4.1 Minimal surface problem

Let uc(x) be a given closed curve in R3. Let c(x) be the projection of the curve in
the plane (R2), and define the region Ω as the domain enclosed by c. We assume
that uc has a unique value for every x ∈ c. The problem is to find the surface in R3

passing through uc with minimum area in the domain Ω.

The area of the surface z = u(x, y) is given by

s(u) =
∫
Ω

√
1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dΩ . (5.4.1)
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The problem can be formulated as:
Find u smooth enough, satisfying the boundary conditions:

u(c) = uc , (5.4.2)

Such that s(u) is minimal. Figure 5.2 shows an example of the solution of such a
problem.

Figure 5.2: Solution of minimal surface problem.

5.4.2 Minimal potential energy

Consider the two rectangular conductors in Figure 5.3.

inner
conductor

outer conductor

Figure 5.3: Two rectangular conductors.

Let the potential u at the inner conductor be equal to 0, and on the outer con-
ductor be equal to 1. What is the potential u in the region between inner and outer
conductor?
Due to symmetry arguments it is sufficient to consider only one quarter of the
region, see Figure 5.4.
The principle of minimum potential energy requires that the potential distribution
is such that the field energy is minimal.
The energy is given by [32],

p(u) =
1

2

∫
Ω

|∇u|2 dΩ . (5.4.3)

The mathematical formulation of this problem is:

Minimize the integral p(u) over the class of sufficiently smooth functions
with boundary conditions

u = 0 on Γ1 ,
u = 1 on Γ2 .

(5.4.4)

(see Figure 5.4).
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Ω
Γ Γ

u = 1

21

u = 0

n
u =0o

o

n
u =0o

o

Figure 5.4: One quarter of the potential problem.

5.4.3 Small displacement theory of elasticity (Plane stress)

Consider the flat thin plate of Figure 5.5. See for example [31]. We assume that the
thickness of the plate is small compared to its diameter. The outer load is uniform
over the cross-section. The load is applied in the same plane as the plate. Along Γ1

the plate is clamped.

Γ Ω Γ1 2

Figure 5.5: Flat plate clamped in Γ1 and with uniform load on Γ2.

Unknowns that we want to determine in this problem are the displacement vector

u = [
u
v

] and the stress tensor σ = [
σxx σxy

σxy σyy
]. These are not independent.

The potential energy of the plate is defined as:

P(u) =
1

2

∫
Ω

(σxxεx + σyyεy + γxyτxy) dΩ −
∫
Γ2

(t1u + t2v) dΓ , (5.4.5)

where ε = [
εx γxy

γxy εy
] denotes the strain tensor and

t = [
t1

t2
] the external load vector.

We suppose that are no body forces in this case.
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In order to get expression (5.4.5) in one type of unknown we need the strain-
displacement relations:

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy = [

∂u

∂y
+

∂v

∂x
] . (5.4.6)

We also need a constitutive equation which relates stress to strain.
If we assume that the material is elastic, i.e. satisfies Hooke’s Law then we get the
following relations:

σxx =
E

1 − ν2
(εx + νεy), (5.4.7)

σyy =
E

1 − ν2
(νεx + εy),

τxy =
E

1 − ν2

1 − ν

2
γxy,

with E the elasticity modulus and ν Poisson’s ratio.
With these relations we can express the potential energy in the displacements only.

Exercise 5.4.1 Show that the potential energy (5.4.5) with the relations (5.4.6) and (5.4.7)
can be written as:

P(u) =
1

2

∫
Ω

{A
∂u

∂x
(

∂u

∂x
+ ν

∂v

∂y
) + B(

∂u

∂y
+

∂v

∂x
)(

∂u

∂y
+

∂v

∂x
)

+A
∂v

∂y
(ν

∂u

∂x
+

∂v

∂y
)} dΩ −

∫
Γ2

(t1u + t2v) dΓ , (5.4.8)

with A = E
(1−ν2)

and B = E
2(1+ν)

(E and ν constant). �

The mathematical formulation of this problem is:

Find u, v with
u = 0 on Γ1 (5.4.9)

such that the integral P(u) in (5.4.8) is minimal.

5.4.4 Loaded and clamped plate

Consider the small plate of Figure 5.6.

Ω
Γ

Ω
Γ

q

Figure 5.6: Clamped plate with normal load q, domain Ω and boundary Γ.

The load q is normal to the plate and the potential energy is given by

I(u) =
∫
Ω

1

2
[w2

xx + 2wxxwyy + w2
yy − 2qw] dΩ , (5.4.10)

where w is the displacement of the neutral face. We wish to determine w for a
given load q. The mathematical formulation of this problem is:
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Find w satisfying the boundary conditions:

w = 0 on Γ ,
∂w
∂n = 0 on Γ .

(5.4.11)

such that the integral I(u) in (5.4.10) is minimal.

5.5 A two-dimensional problem

Theorem 5.2.1 can be generalized to two dimensions.

Theorem 5.5.1 Let Ω be a domain in R2 with boundary Γ. Let Γ be subdivided into three
parts Γ1, Γ2 and Γ3:

Γ = Γ1 ∪ Γ2 ∪ Γ3 .

The class of functions in which we try to find a solution is given by

Σ = {u| u(x) = g(x), ∀x ∈ Γ1} .

Let F(x, y, u, p, q) and f (x, y, u) be sufficiently smooth functions. Consider the following
minimization problem

min
u∈Σ

J[u] = min
u∈Σ

∫
Ω

F(x, y, u, ux, uy) dΩ +
∫
Γ2

f (x, y, u) dΓ . (5.5.1)

If there exists a solution û of this problem then û satisfies the PDE

∂F

∂u
− ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂uy
= 0 , (5.5.2)

with boundary conditions

u = g , ∀x ∈ Γ1 (5.5.3)

∂F

∂ux
n1 +

∂F

∂uy
n2 +

∂ f

∂u
= 0 , ∀x ∈ Γ2 (5.5.4)

∂F

∂ux
n1 +

∂F

∂uy
n2 = 0 , ∀x ∈ Γ3 . (5.5.5)

where n = (
n1

n2
) is the outward normal vector at the boundary.

Exercise 5.5.1 Prove theorem 5.5.1 using the technique of Section 5.3. �

5.6 Theoretical remarks

5.6.1 Smoothness requirements

In our derivations of the PDEs we have assumed that the solution is sufficiently
smooth. This means that the solution must be so smooth that the differential equa-
tion exists. Hence if the PDE is of second order, it is necessary that the solution
is in C2(Ω). However in the original minimization problem we have only first
order derivatives. Hence for the existence of a solution of the minimization prob-
lem it is sufficient that the first derivatives exist, or more precisely that the integral
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makes sense. Usually this is translated by requiring that both the unknown u as its
derivatives ux and uy are square integrable, i.e.∫

Ω

u2 dΩ ,
∫
Ω

u2
x dΩ and

∫
Ω

u2
y dΩ

must exist and be finite.
In general this is even weaker than requiring that the derivatives exist everywhere
in Ω.

If the solution of the minimization problem is not twice differentiable, it cannot
satisfy the PDE. So actually a minimization problem may have a solution in a larger
class of functions than the corresponding PDE. In fact the minimization problem
can be seen as a generalization of that PDE.

5.6.2 Boundary conditions

We have seen that we must distinguish between essential and natural boundary
conditions. Essential boundary conditions are conditions that have to be satisfied
by all functions in the function class where we seek the solution. Natural boundary
conditions appear naturally from the minimization problem once we derive the
corresponding Euler-Lagrange equations.

In general we can state the following:

If a minimization problem contains derivatives of first order and not higher,
the corresponding Euler-Lagrange equation will be of second order. For such
a problem essential boundary conditions have always the form
u = g0, x ∈ Γ0. If a boundary condition contains first derivatives for this type
of problems, it is always a natural boundary condition. See [37].

If a minimization problem contains derivatives of second order and not higher,
the corresponding PDE will be of fourth order. For such problem bound-
ary conditions involving only u or first order derivatives of u are essential,
boundary conditions involving second or third derivatives will be natural.

5.6.3 Weak formulation

Consider minimization problem (5.3.1) without the integral over Γ2 and with Γ1

equal to the whole boundary Γ, hence

min
u∈Σ

I(u) =
∫
Ω

{ k

2
|∇u|2 − u f} dΩ , (5.6.1)

u|Γ = 0 . (5.6.2)

According to (5.3.7), the solution must satisfy∫
Ω

{−div (k∇u)− f}η dΩ = 0 , (5.6.3)

for all η in Σ.

This is precisely the differential equation multiplied by η and integrated over the
domain. In Chapter 7 we shall use such a method to arrive at the weak formulation.
In that case η is called a test function.
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5.7 Exercises

Exercise 5.7.1 Find the Euler-Lagrange equation for the minimal surface problem (5.4.1),
with boundary conditions (5.4.2). Do not use theorem 5.5.1. �

Exercise 5.7.2 Find the Euler-Lagrange equations for the minimization problem in Sec-
tion 5.4.2 by direct variation around the solution. Which boundary conditions are essential
and which are natural? �

Exercise 5.7.3 Find the Euler-Lagrange equations for the minimization problem of Exer-
cise 5.4.1 in Section 5.4.3. (assume u = û + εη, v = v̂ + εξ).

Use the strain-displacement relations (5.4.6) and stress-strain relations (5.4.7) to rewrite
the Euler-Lagrange equations in the form

−∂σxx

∂x
− ∂τxy

∂y
= 0 ,

−∂τxy

∂x
− ∂σyy

∂y
= 0 .

�

Exercise 5.7.4 Find the Euler-Lagrange equations for the minimization problem in Sec-
tion 5.4.4. �

Exercise 5.7.5 Find the Euler-Lagrange equations for the rotation surface with minimal
area defined by

min J[u] = 2π

x1∫
x0

u

√
1 +

(
du

dx

)2

dx ,

u(x0) = y0 .

�

Exercise 5.7.6 Consider the region Ω of Figure 5.7.

Ω

Ω

Γ

2

4

7

3

1

6
Γ2

1

Γ

Γ

Γ5

Γ

Γ

Figure 5.7: Region consisting of 2 layers.

In this region we have two layers Ω1 and Ω2 with different values of the permeability κ
(κ1 and κ2). The pressure p in this layer satisfies the minimization problem

min
p∈Σ

∫
Ω

1

2
κ|∇p|2 dΩ, (5.7.1)

subject to the essential boundary condition p|Γ1
= g(x).

Find the Euler-Lagrange equations for this problem. What are the natural boundary con-
ditions on Γ3. Derive also the interface conditions on Γ7.
Hint: Split the integral into two parts. �
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5.8 From PDE to minimization problem

5.8.1 Introduction

We have seen in Section 5.3 that if the solution of a minimization problem is smooth,
it satisfies a partial differential equation. Furthermore, on those parts of the bound-
ary where no essential boundary condition has been prescribed, natural bound-
ary conditions result from the minimization problem. Before trying to solve these
minimization problems numerically we ask ourselves the question: is it always
possible to find a minimization problem corresponding to a (partial) differential
equation? The answer to this question is no. Under certain conditions only, one
can find an equivalent minimization problem. The key property will be symme-
try, which will be defined later on in this section. Nevertheless a large class of
important PDEs satisfies the requirements necessary to derive an equivalent min-
imization problem. In Chapter 7 we shall generalize the theory in such a way
that the numerical techniques of Chapter 6 can be applied even for cases where no
minimization problem can be found. For simplicity we shall restrict ourselves to
linear problems only. However, we have seen in 5.1 that also non-linear PDEs may
correspond to minimization problems.

In first instance we consider only homogeneous boundary conditions. The general
case will be treated later.

5.8.2 Linear problems with homogeneous boundary conditions

Consider the linear PDE (5.3.8)-(5.3.10), but with homogeneous boundary condi-
tions

−div k∇u = f , (5.8.1)

u|Γ1
= 0 , (5.8.2)

k
∂u

∂n

∣∣∣∣
Γ2

= 0 . (5.8.3)

The solution of (5.8.1)-(5.8.3) must be found in the vector space Σ:

Σ = {u smooth | u|Γ1
= 0 ;

∂u

∂n

∣∣∣∣
Γ2

= 0} .

In general we shall write a linear PDE like (5.8.1) in the form

Lu = f . (5.8.4)

Hence in (5.8.1) we have Lu ≡ −div (k∇u).
It can be shown that a minimization problem for (5.8.4) can be found if L satisfies
the two following properties:

symmetry (self adjointness)
∫
Ω

uLv dΩ =
∫
Ω

vLu dΩ , ∀u, v ∈ Σ . (5.8.5)

positiveness
∫
Ω

uLu dΩ ≥ 0 , ∀u ∈ Σ . (5.8.6)

In practice it turns out that the two properties are also necessary for the existence
of a corresponding minimization problem.
Differential operators satisfying properties (5.8.5) and (5.8.6) are called strongly el-
liptic.
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Before constructing a minimization problem we shall check if properties (5.8.5),
(5.8.6) are satisfied by problem (5.8.1)-(5.8.3). To this end we multiply (5.8.1) by
v ∈ Σ, integrate over Ω and apply the divergence theorem twice:

∫
Ω

−v(div k∇u) dΩ =
∫
Ω

k∇u · ∇v dΩ −
∮
Γ

vk
∂u

∂n
dΓ . (5.8.7)

Due to the boundary conditions the boundary integral vanishes.

∫
Ω

k∇u · ∇v dΩ = −
∫
Ω

u(div k∇v) dΩ +
∮
Γ

uk
∂v

∂n
dΓ . (5.8.8)

Again the boundary integral vanishes.
In fact (5.8.7)-(5.8.8) already demonstrate symmetry.

To prove positivity it is sufficient to substitute u for v in (5.8.7):∫
Ω

−u(div k∇u) dΩ =
∫
Ω

k∇u · ∇u dΩ ≥ 0 , for u ∈ Σ . (5.8.9)

With properties (5.8.5) and (5.8.6) it is easy to prove the following theorem:

Theorem 5.8.1 Let L be a linear, symmetric, positive differential operator defined over a
space Σ and let

Lu = f . (5.8.10)

Then the solution u minimizes the functional

I(u) =
∫
Ω

{1

2
uLu − u f} dΩ , over the space Σ . (5.8.11)

On the other hand if u minimizes (5.8.11) then u satisfies (5.8.10).

Proof
First suppose that u0 is the solution of (5.8.10), hence Lu0 = f .
Substituting this in (5.8.11) gives (using the symmetry of L)

I(u) =
∫
Ω

{1

2
uLu − uLu0} dΩ =

∫
Ω

{1

2
(u − u0)L(u − u0)− 1

2
u0Lu0} dΩ . (5.8.12)

Since
∫
u

1
2 u0Lu0 dΩ is fixed and L is positive we know that the minimum is reached

if ∫
Ω

1

2
(u − u0)L(u − u0) dΩ = 0 .

Hence u0 minimizes (5.8.11). �

Exercise 5.8.1 Show that the minimum of I(u) over Σ satisfies (5.8.10). Use the standard
Euler-Lagrange approach and symmetry of L. �
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If we apply this theorem to example (5.8.1)-(5.8.3), it immediately follows that the
corresponding functional I(u) is given by

I(u) =
∫
Ω

{1

2
u(−div k∇u)− u f} dΩ

=
∫
Ω

{1

2
k|∇u|2 − u f} dΩ ,

and this is the same as (5.3.1) except for the boundary integral. Actually with re-
spect to the minimization problem it is not necessary to satisfy the natural bound-
ary condition and it is sufficient to consider the space

Σ = {u smooth | u|Γ1
= 0} .

REMARK:

The proof of this theorem is based upon the symmetry and the positivity of the
differential operator. These properties are sufficient. In practice these properties
are also necessary. As a consequence no equivalent minimization problem for the
convection-diffusion equation equation can be found.

In this section we have restricted ourselves to homogeneous boundary conditions,
because they are necessary for the symmetry property (5.8.5). Otherwise the bound-
ary integral in (5.8.7) would not vanish. It is only a small extension to consider also
non-homogeneous boundary conditions, as will be demonstrated in Section 5.8.3.

Exercise 5.8.2 Show that the operator in the convection-diffusion equation

−div (k∇c) + u · ∇c = f

is not symmetric. �

5.8.3 Linear problems with non-homogeneous boundary condi-
tions

Theorem 5.8.1 relates a PDE with an equivalent minimization problem. However,
this theorem is only applicable for homogeneous boundary conditions. In case of
non-homogeneous boundary conditions we have to adapt the theorem or make
the boundary conditions homogeneous. The last solution is the most simple one.

Theorem 5.8.2 Let Lu = f with non-homogeneous boundary conditions. Suppose that
there is a smooth function w satisfying the non-homogeneous boundary conditions. If this
function does not exist, the original problem has no solution.
Then u satisfies the minimization problem

I(u) =
1

2

∫
Ω

(u − w)(Lu + Lw) dΩ −
∫
Ω

f u dΩ . (5.8.13)

Proof
Consider

v = u − w. (5.8.14)

Clearly v satisfies homogeneous boundary conditions and since

Lv = Lu − Lw = f − Lw, (5.8.15)
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Theorem 5.8.1 can be applied for v with right-hand side f − Lw.

So the corresponding minimization problem is:

min
v∈Σ

I(v) =
1

2

∫
Ω

vLv dΩ −
∫
Ω

v( f − Lw) dΩ , (5.8.16)

with Σ provided with homogeneous boundary conditions.
Substituting (5.8.14) in (5.8.16) it is easy to see that

Ĩ(u) =
1

2

∫
Ω

(u − w)(Lu + Lw) dΩ −
∫
Ω

f u dΩ +
∫
Ω

f w dΩ . (5.8.17)

Since w and f are given functions independent of the solution, the minimum of
(5.8.17) does not change if we skip the last term and we end up with (5.8.13). �

Mark that in this case we do not have
∫
Ω

uLw dΩ =
∫
Ω

wLu dΩ (why?). As a

consequence Equation (5.8.13) can not be simplified furthermore.
It is of course necessary to remove w from this expression, since w is unknown.
This will be done in the following example.

Theorem 5.8.3 Consider a region Ω with boundary Γ. Γ consists of 3 parts Γ1, Γ2 and Γ3

such that
Γ = Γ1 ∪ Γ2 ∪ Γ3 .

Consider the differential equation

−div k∇u = f (k > 0) in Ω , (5.8.18)

with boundary conditions

u = g1 on Γ1 , (5.8.19)

k
∂u

∂n
= g2 on Γ2 , (5.8.20)

cu + k
∂u

∂n
= g3 on Γ3 (c > 0) . (5.8.21)

Then u satisfies the minimization problem

min
u∈Σ

∫
Ω

{1

2
k|∇u|2 − u f} dΩ −

∫
Γ2

g2u dΓ +
∫
Γ3

{1

2
cu2 − g3u} dΓ , (5.8.22)

with Σ : {u | u|Γ1
= g1}.

Proof
The function w satisfies (5.8.19) to (5.8.21).
Substitution of these terms in (5.8.13) gives

min
u

I(u) =
1

2

∫
Ω

(u − w)(−div (k∇(u + w)) dΩ −
∫
Ω

f u dΩ .

Gauss theorem applied to the first terms gives

I(u) =
1

2

∫
Ω

∇(u − w) · k∇(u + w) dΩ −
∫
Ω

f u dΩ

−1

2

∫
Γ

(u − w)k∇(u + w) · n dΓ . (5.8.23)
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The first term can be written as

1

2

∫
Ω

∇(u − w) · k∇(u + w) dΩ =

1

2

∫
Ω

∇u · k∇u dΩ − 1

2

∫
Ω

∇w · k∇w dΩ . (5.8.24)

Since the last term does not depend on u it can be removed from the minimization
problem, without effect on u.
The last term of (5.8.23) is split over the 3 boundaries Γ1, Γ2 and Γ3.
On Γ1 this term is equal to 0 because of u − w = 0.
On Γ2 it can be written as:

−1

2

∫
Γ2

{uk
∂(u + w)

∂n
− wk

∂(u + w)

∂n
} dΓ = −

∫
Γ2

{ug2 − wg2} dΓ

and again the last term can be skipped from the minimization problem since it
does not depend on u.
On Γ3 as

−
∫
Γ3

{ug3 − wg3 − 1

2
cu2 +

1

2
cw2} dΓ ,

and now the second and fourth term can be removed (why ?).
So at last we arrive at the minimization problem (5.8.22).

So the Dirichlet boundary condition (5.8.19) is an essential boundary condition. �

5.8.4 Exercises

Exercise 5.8.3 Find the equivalent minimization problem of the three-dimensional Pois-
son equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= f (x, y, z) in Ω ,

with boundary condition
u = g on Γ .

�

Exercise 5.8.4 Find the minimization problem corresponding to the differential equation

− d

dx
(p(x)

du

dx
) = f

with boundary condition

u(0) = 1 , u(1) +
du

dx
(1) = a .

�

Exercise 5.8.5 Find the minimization problem corresponding to the system of s ordinary
differential equations

s

∑
k=1

[
− d

dx
(pjk(x)

duk

dx
) + qjk(x)uk

]
= fj(x) j = 1, 2, ..., s ,

a < x < b ,
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with boundary conditions uj(a) = uj(b) = 0 (j = 1, 2, ..., s) and P a symmetric positive
definite matrix with elements pjk(x) and Q a symmetric positive semi-definite matrix with

elements qjk(x).
Use theorem 5.8.1 with u a vector instead of a scalar. �

Exercise 5.8.6 Find the minimization problem corresponding to the differential equation

d4u

dx4
= f ,

with boundary conditions

u(0) =
du

dx
(0) = 0 ,

du

dx
(1) = 0 ,

d3u

dx3
(1) = 1 .

�

5.9 Mathematical theory of minimization

Section 5.8 shows that linear PDEs which satisfy some extra properties like symme-
try and positivity, are equivalent to a minimization problem. In the proof of Theo-
rem 5.8.1 we needed a function space Σ satisfying some smoothness requirements.
In this section we shall consider this theory from a more fundamental (mathemat-
ical) point of view. However, this will not be a complete and thorough mathemat-
ical treatment of the problem, since that is beyond the scope of this book.

Let us first introduce some notations.

In Section 5.8 we have used expressions like
∫
Ω

u f dΩ. So it is naturally to use the

L2 inner product

(u, v) =
∫
Ω

uv dΩ , (5.9.1)

which is defined for all functions u, v ∈ L2(Ω).

Besides that we have introduced the integral∫
Ω

uLv dΩ (5.9.2)

in (5.8.5). For this integral we have required some properties like symmetry (5.8.5)
and positivity (5.8.6).

Definition 5.9.1
The operator L is called positive definite if there exist a constant γ > 0, such that∫

Ω

uLu dΩ ≥ γ
∫
Ω

u2 dΩ , ∀u ∈ Σ . (5.9.3)

If (5.8.5), (5.8.6) and (5.9.3) are satisfied we can define a new inner product, the
energy product, by:

(u, v)L =
∫
Ω

uLv dΩ (5.9.4)

and corresponding (energy) norm ‖u‖2
L = (u, u)L.
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Exercise 5.9.1 Prove that (5.9.4) satisfies all the requirements of an inner product. �

It is necessary that the definition space Σ is such that the integral in (5.9.4) makes
sense (i.e. is finite) and besides that, the space must be a vector space. This means
that elements in Σ must satisfy the following linearity property

if u, v ∈ Σ then also

αu + βv ∈ Σ with α, β ∈ R
1 .

The space Σ is a space with smoothness requirements for its elements, but also
each function in Σ must satisfy essential boundary conditions.

Exercise 5.9.2 Show that Σ can be a vector space only if homogeneous boundary condi-
tions are satisfied. �

Now we can formulate Theorem 5.8.1 in a more mathematical way:

Let L be a linear operator defined on a Hilbert space Σ satisfying

(Lu, v) = (v, Lu) ∀u, v ∈ Σ i.e. L is self-adjoint . (5.9.5)

(u, Lu) ≥ 0 ∀u ∈ Σ i.e L is positive . (5.9.6)

(u, Lu) ≥ γ(u, u) ∀u ∈ Σ i.e L is positive definite . (5.9.7)

In fact (5.9.7) implies (5.9.6).
(u, u) is the L2 inner product and (Lu, v) is the inner product in Σ.

Then the solution of
Lu = f , u ∈ Σ , f ∈ L2(Ω) , (5.9.8)

minimizes the functional with J(u)

min
u∈Σ

J(u) =
1

2
(u, Lu)− (u, f ) , (5.9.9)

and the minimum of (5.9.9) satisfies (5.9.8).

Exercise 5.9.3 Prove this theorem in the same way as in Section 5.8. �

REMARK:
The property that L must be positive definite is not necessary in the theorem. It
is only important in order to define an inner product. Also it enables us to prove
uniqueness of the solution.

Theorem 5.9.1 There is exactly one u ∈ Σ that minimizes the functional J(u) defined in
(5.9.9).

Proof
(u, f ) ≤ ‖u‖ ‖ f‖ , (5.9.10)

where ‖u‖ is the L2-norm. (‖u‖ = (u, u)1/2).

From (5.9.3) it follows that

‖u‖2 ≤ 1

γ
‖u‖2

L . (5.9.11)

(5.9.10) together with (5.9.11) gives

(u, f ) ≤ 1√
γ
‖u‖L‖ f‖ . (5.9.12)

Now we apply Riesz’ representation theorem (see [22]), This theorem states:
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for every bounded linear functional �(u) defined on a Hilbert space H there is exactly
one element u0 ∈ H such that

�(u) = (u, u0)H ∀u ∈ H ,

with (u, v)H the inner product in H.

Hence there is exactly one u0 ∈ Σ such that

(u, f ) = (u, u0)L ∀u ∈ Σ . (5.9.13)

Now consider the minimization problem:

J[u] =
1

2
‖u‖2

L − (u, f )

=
1

2
‖u‖2

L − (u, u0)L

=
1

2
(u − u0, u − u0)L − 1

2
(u0, u0)L . (5.9.14)

Since (v, v)L > 0 ∀v ∈ Σ , J[u] takes its minimum for u = u0. Since u0 is unique
(from the Riesz’ representation theorem) we have proven the theorem. �

So the minimization problem has always a unique solution in the Hilbert space Σ.
However, this solution does not have to be the solution of the original PDE. The
reason is that for second order PDEs, the inner product (u, Lv) only contains first
order derivatives.
For elements in Σ it is sufficient that (u, Lu) is finite, hence the first derivative must
be in L2(Ω). For a second order PDE it is necessary that the second derivatives
exist. So we may have a solution of the minimization problem in Σ that does not
satisfy the PDE in classical sense.

According to Theorem 5.8.1 a solution of the minimization problem satisfies

Lu = f u ∈ Σ . (5.9.15)

But if u is not smooth we cannot consider this as a classical solution. So a solution
of (5.9.9) is called a ’generalized’ or ’weak’ solution of the PDE. If the solution is
also sufficiently smooth, it is called a ’strong’ solution. In fact we have proved that
there is always a weak solution. To prove that there is a strong solution we need
extra smoothness requirements for both f and the boundary of Ω. Such a proof is
general not simple. See for example [12]. But if a strong solution exists, it is equal
to the weak solution. (Why?).

The Hilbert spaces introduced in this Chapter are usually Sobolev spaces denoted
as Hk(Ω), where k refers to the highest order derivatives in the inner product. For
example the space H1(Ω) is defined in Theorem (1.6.1). More theory about Sobolev
spaces can for example be found in [1].

5.10 Summary of Chapter 5

A number of physical problems can be formulated in the following form:

find a function u(x) in a class of functions such that an integral of a function
of u(x) and some of its derivatives is minimal.
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It has been demonstrated by variation, that the solution of the minimization prob-
lems satisfies a PDE, the Euler-Lagrange equation.

Some boundary conditions can be prescribed on the solution class of the mini-
mization problems; these are called essential boundary conditions. Others arise
naturally when the Euler-Lagrange equations are derived from the minimization
problem. These boundary conditions are called natural. They always involve first
order derivatives for second order equations and second and third order deriva-
tives for fourth order equations.

On the other hand it has been shown that under certain conditions (symmetry and
positiveness) an equivalent minimization problem can be derived from a PDE. The
minimization problem has always lower order derivatives than the PDE. For ex-
ample if the minimization problem contains first order derivatives the PDE is of
second order and in case the minimization problem contains second order deriva-
tives, the PDE is of order four. As a consequence the smoothness requirements for
the solution of the PDE are more restrictive than those of the minimization prob-
lem.

If the PDE and minimization problem are equivalent, solution of one of the two
automatically solves the other.



Chapter 6

The numerical solution of
minimization problems

Objectives

Chapter 5 showed the equivalence between a certain class of PDEs and minimiza-
tion problems. As a consequence solving the PDE also solves the minimization
problem and vice versa. Chapters 3, 4 were devoted to solving the PDE directly
by finite differences or, after integration over a volume, by finite volumes. In
this chapter we shall solve the corresponding minimization problem numerically.
Hence the PDE is solved in an indirect way.
The numerical technique that will be applied is the classical Ritz’s method based on
expressing the solution as a linear combination of previously chosen functions: the
basis functions. These are in general not related to the problem, but chosen before-
hand. This method itself is not very practical, but combined with a clever choice
of basis functions we arrive at the finite element method (FEM). The FEM is well
suited for unstructured grids and has a strict local character. All information in
one element is used, without considering neighbors. This makes the method very
attractive for computer implementation. For certain types of PDEs, for example
those arising from elasticity and plasticity problems, the FEM is the most popular
method at this moment.
Another way of looking at the FEM, is to consider it as an automatic tool to derive
finite difference formula for unstructured grids. An important advantage of the
FEM is that the treatment of boundary conditions is almost always very natural
and therefore simpler than in classical difference methods.

6.1 Ritz’s method

6.1.1 Introduction

Suppose we want to solve the general minimization problem

min
u

J[u] ; J[u] =
∫
Ω

F(x, y, u, ux, uy) dΩ , (6.1.1)

where the minimum must be found over a class of functions in the target space Σ:

Σ = {u sufficiently smooth; u|Γ = g} . (6.1.2)
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Chapter 5 already demonstrated that the solution of this problem is not simple.
Actually we transformed it to a minimization problem with one unknown (ε), thus
deriving the Euler-Lagrange equations.
Direct minimization of (6.1.1), (6.1.2) is in general only possible if we have a finite
number of unknowns.

This can be achieved by approximating the solution by a linear combination of a
finite fixed set of functions ϕi(x):

un(x) =
n

∑
j=1

aj ϕj(x) . (6.1.3)

In the remainder of this section we assume homogeneous essential boundary con-
ditions, i.e. g = 0.

The functions ϕi(x) (the basis functions), must be chosen such that:

ϕi(x) ∈ Σ for all i .

This means that ϕi(x) must be sufficiently smooth, such that (6.1.1) makes sense,
and also that ϕi(x) must satisfy the homogeneous boundary conditions. So in fact
the functions ϕi(x) span a subspace of Σ. Moreover, the functions ϕi(x) should
preferably be linearly independent (why?). Now Ritz’s method consists of solving
the minimization problem over this subspace.

Since only the ai in (6.1.3) are unknown, this means that the problem reduces to
minimizing over the set a1...an:

min
ai∈Rn

J[a1, a2, ..., an] . (6.1.4)

The necessary condition for the existence of a minimum is

∂J[un]

∂ai
= 0 , i = 1, 2, ..., n . (6.1.5)

(6.1.5) forms a set of n equations with n unknowns, which under certain conditions,
can be solved uniquely. This produces a solution un(x). By increasing the number
of basis functions we hope that un(x) converges to the solution u(x) of (6.1.1) and
(6.1.2). It is clear that the choice of the basis functions ϕi(x) is essential for the
convergence and especially for the speed of convergence of Ritz’s method.

Let us first consider a simple one-dimensional example to show how Ritz’s method
behaves in practice.

6.1.2 A simple one-dimensional example

Theorem 6.1.1 Let u satisfy the following minimization problem (cf. Section 5.1.1)

min
u∈Σ

J[u] =

1∫
0

{1

2

(
du

dx

)2

− f (x)u(x)} dx , (6.1.6)

Σ : {u | u sufficiently smooth; u(0) = 0} .

and let un(x) be defined by (6.1.3), then the set of Ritz equations is given by

n

∑
j=1

aj

1∫
0

dϕi

dx

dϕj

dx
dx =

1∫
0

f (x)ϕi(x) dx, i = 1, 2, ..., n. (6.1.7)
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Proof
Substitution of (6.1.5) in (6.1.6), (6.1.5) gives

∂

∂ai

1∫
0

{1

2

⎛⎜⎜⎜⎝
d

n

∑
j=1

aj ϕj(x)

dx

⎞⎟⎟⎟⎠
2

− f (x)(
n

∑
j=1

aj ϕj(x))} dx = 0. (6.1.8)

Hence ai satisfies (6.1.7) �

Exercise 6.1.1 Verify Equation (6.1.7) �

Exercise 6.1.2 Show that the solution of (6.1.6) satisfies the DE

−d2u

dx2
= f (x) , (6.1.9)

with boundary conditions

u(0) = 0 ,
du

dx
(1) = 0 , (6.1.10)

provided the solution of (6.1.6) is twice differentiable. �

The system of equations (6.1.7) is uniquely solvable if the coefficient matrix S is
non-singular. This system can be written in matrix-vector notation by

Sa = f , (6.1.11)

with S an (n × n) matrix with elements sij =
1∫

0

dϕi
dx

dϕj

dx dx,

a an (n × 1) vector with elements aj,

f an (n × 1) vector with elements fi =
1∫

0

f (x)ϕi(x) dx .

There are many possible choices for the basis functions ϕi(x), but we shall restrict
ourselves to 2 specific ones.

Theorem 6.1.2 Let the basis functions ϕi(x) be given by

ϕk(x) = sin kπx (6.1.12)

then the matrix S in (6.1.11) has elements

Skk =
k2π2

2
. (6.1.13)

and the solution ak satisfies

ak =
2

k2π2

1∫
0

f (x) sin(kπx) dx . (6.1.14)

�

The basis functions ϕk(x) are elements of Σ, since they are analytical functions
and satisfy ϕk(0) = 0. Note that none of them satisfies the natural boundary condi-
tion. Using the orthogonality relations of the cosine we see that the basis functions
ϕk(x) produce a diagonal matrix S, with diagonal elements (6.1.13)
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Exercise 6.1.3 Prove that Equation (6.1.14) is the result of substituting the basis func-
tions (6.1.12) into (6.1.7) �

Exercise 6.1.4 Show that the set ak defined by (6.1.14) form the coefficients of the Fourier
expansion of the exact solution u(x) using functions sin(kπx).
Hint: substitute 6.1.3 into 6.1.9. �

Theorem 6.1.3 Let the basis functions ϕi(x) be given by

ϕk(x) = xk (6.1.15)

then the matrix S in (6.1.11) is given by

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

1 4
3

6
4

8
5

10
6

1 6
4

9
5

12
6 · · ·

1 8
5

12
6

16
7 · · ·

1 10
6 · · · · · · · · ·

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.1.16)

�

Exercise 6.1.5 Derive Equation (6.1.16). �

Matrix S in (6.1.16) is a Hilbert matrix. Not only is this matrix full, it is also very
badly conditioned. Although the matrix is non-singular, numerically it is not in-
vertible for relatively small values of n (order 10 to 20), on a 16 digits computer.

From these two specific choices for the basis functions we can draw some conclu-
sions with respect to requirements for the basis functions.

6.1.3 Some observations concerning the basis functions

- With respect to the basis function ϕk(x) defined in (6.1.12) it is clear that the
solution un(x) converges to the minimization problem, because the Fourier
series is convergent (Exercise 6.1.4).
One can also prove convergence in case of basis functions ϕk(x) in (6.1.15),
provided the system of linear equations can be solved.

- Even though the basis functions themselves do not satisfy the natural bound-
ary condition, in the limit the linear combination does in some way, if there

is convergence to the exact solution. In practice dun

dx (x) will be small in some
sense, for n large enough.

- We have seen that with the specific choice (6.1.12) of the basis functions,
the coefficient matrix is diagonal, and therefore the solution of the system
of equations is trivial.
This is not a coincidence: these functions form the eigenfunctions of the con-
tinuous eigenvalue problem

−d2u

dx2
= λu ; u(0) = 0 , u(1) = 0 . (6.1.17)

These eigenfunctions are orthogonal with respect to the inner product

1∫
0

dϕi

dx

dϕj

dx
dx,
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which implies that these inner products vanish if i �= j. Also for more general
problems one can define such an inner product and again the eigenfunctions
have the same property. Unfortunately in practice it is almost impossible to
find an analytical expression for the eigenfunctions. Numerical computation
of the eigenfunctions is in general a harder task than solving the system of
equations (6.1.11).

- On the other hand choosing an arbitrary set of basis functions leads to a full
matrix. Unless the number of basis functions is very small, solution of such
a system is very expensive.
In finite difference methods and finite volume methods we always arrived at
systems of equations with a sparse structure. If we want a sparse matrix in
Ritz’s method, it is necessary that most of the integrals

1∫
0

dϕi

dx

dϕj

dx
dx

vanish. So the majority of the basis functions must be orthogonal with re-
spect to the inner product defined by these integrals. We shall call such a set
”nearly orthogonal”.

- It is obvious that in the limit, the set of basis functions must span the com-
plete space Σ, otherwise there are elements in Σ that can not be represented
as linear combination of basis functions. Besides that, it would be nice if arbi-
trary functions in Σ could be approximated accurately with a small number
of basis functions. The basis functions ϕk(x) in (6.1.12) do not satisfy this
property.

Combining all this we come to the following requirements for our set of basis func-
tions:

1 the basis functions must be linearly independent

2 the basis functions must span the complete space Σ

3 the basis functions should be ”nearly orthogonal”

4 arbitrary functions in Σ must be approximated accurately by a limited num-
ber of basis functions

At first sight it seems very difficult to satisfy all these demands. However, in Sec-
tion 6.2 we shall show how to construct such basis functions by the finite element
method.

We have treated lightly over the convergence of Ritz’s method for a good reason:
this is very hard to prove in general. For a specific case of practical importance we
provide a proof: strongly elliptic operators (see Section 5.8.2).

6.1.4 Mathematical theory: convergence of Ritz’s method

We consider the convergence of Ritz’s method for the specific case of a linear op-
erator satisfying properties (5.9.5) – (5.9.7). In order to do that we need a few tools.
First we recall the definition of a basis for a Hilbert space.

Definition 6.1.1 A family {ϕα} ∈ Σ is called a basis for the Hilbert space Σ, if the
following two properties are satisfied.
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1. Linear independence

N

∑
i=1

βi ϕi = 0 implies βi = 0 , i = 1, .., N.

2. Completeness
For every u ∈ Σ and a given ε > 0, there is a finite linear combination of basis
functions such that the distance between u and this combination is smaller than ε.
In formula:
∀ε > 0 ∃ {ϕα1 , ϕα2 , ..., ϕαN} and {β1, β2, ..., βN}, N < ∞, such that

‖u −
N

∑
i=1

βi ϕαi
‖Σ < ε ,

in which ‖ · ‖Σ is the norm in Σ.

�

Theorem 6.1.4 The Ritz equations with approximate solution (6.1.3) to solve the mini-
mization problem (5.9.9):

min
u∈Σ

J[u] , with J[u] =
1

2
‖u‖2

L − (u, f ) , (6.1.18)

are given by
n

∑
j=1

aj(ϕi, ϕj)L = ( f , ϕi) i = 1, ..., n . (6.1.19)

Exercise 6.1.6 Prove Equation (6.1.19) �

The system of linear equations (6.1.19) has a unique solution if and only if the
coefficient matrix S defined by

S =

⎡⎢⎢⎢⎢⎣
(ϕ1, ϕ1)L (ϕ2, ϕ1)L · · · (ϕn, ϕ1)L

(ϕ1, ϕ2)L (ϕ2, ϕ2)L · · · (ϕn, ϕ2)L

. . .

. . .
(ϕ1, ϕn)L (ϕ2, ϕn)L · · · (ϕn, ϕn)L

⎤⎥⎥⎥⎥⎦ . (6.1.20)

is non-singular.
S is a Gramm matrix for the set of functions ϕ1, ϕ2, ..., ϕn in the space Σ. In the
following we assume that {ϕi} is a basis for Σ.

Theorem 6.1.5 S defined by (6.1.20) is not singular.

Proof
Suppose there is a non-zero vector α = (α1, α2, ..., αn) such that Sα = 0.
Then (α, Sα) = 0 so

∑
i

∑
j

αiαj(ϕi, ϕj)L = 0 .

Since the inner product is bilinear this implies

(∑
i

αi ϕi, ∑
j

αj ϕj)L = 0 or

‖∑
i

αϕi‖L = 0 and because ||.||L is a norm ∑
i

αϕi = 0 .

By the linear independence of the basis functions, this implies αi = 0. So Sα = 0
implies α = 0 and S is non-singular. �
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Theorem 6.1.6 If {ϕi} is a basis for Σ, then approximation (6.1.3) converges to the solu-
tion u0 of the minimization problem (6.1.18), .

Proof
According to (5.9.14), J[u] can be written as

J[u] =
1

2
‖u − u0‖2

L −
1

2
‖u0‖2

L , (6.1.21)

where u0 ∈ Σ minimizes J[u] over Σ. This is a continuous function of the energy
norm (why?), that is

∀ε > 0 ∃ δ > 0 such that

‖u − u0‖L < δ ⇒ |J[u]− J[u0]| < ε . (6.1.22)

Let un
0 ∈ Σn = Span {ϕj}n

j=1 minimize J[u] over Σn, then

J[u0] ≤ J[un
0 ] ≤ J[un], ∀un ∈ Σn. (6.1.23)

We choose un using completeness:

∃N ≥ 1, α1, . . . , αN such that

‖u0 − un‖L < δ, with un =
n

∑
j=1

αj ϕj, ∀n ≥ N. (6.1.24)

Continuity of J[u] gives |J[un]− J[u0]| < ε. Note that ε > 0 is arbitrary, for which
δ > 0 and N ≥ 1 exist, and hence J[un] → J[u0] as n → ∞.
The Squeeze Theorem is applied to (6.1.23) to conclude that

J[un
0 ] → J[u0] as n → ∞. (6.1.25)

Equation (6.1.21) finally implies ‖un
0 − u0‖ → 0 as n → ∞. �

6.2 The finite element method in R
1

6.2.1 Introduction

Ritz’s method can be used to solve the minimization problem and therefore also
the corresponding PDE. The main issue in Ritz’ method is the choice of the basis
functions. In Section 6.1.3 we have formulated a number of properties the basis
functions should satisfy, in order to get an attractive solution method.
We derive a construction technique that creates basis functions satisfying all these
properties. The key to this method is the subdivision of the region Ω into sub-
parts (elements) and an element-wise polynomial approximation of the unknown
function.

First we demonstrate this construction in R1, subsequently it will be extended to
R2.

6.2.2 The Poisson equation in R1

As first example we consider Poisson’s equation in one dimension:

−d2u

dx2
= f (x) ,

u(0) = 0 , (6.2.1)

du

dx
(1) = 0 .
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Exercise 6.2.1 Show that the solution of (6.2.1) satisfies the minimization problem

min
u∈Σ

J[u] ; J[u] =

1∫
0

{1

2
(

du

dx
)2 − u(x) f (x)} dx . (6.2.2)

Σ : {u sufficiently smooth ; u(0) = 0}
�

The smoothness requirement implies that the integral in (6.2.2) makes sense.

The system of Ritz equations is given by (6.1.7).
In order to construct the basis functions we subdivide the interval [0, 1] into subin-
tervals ek = [xk−1, xk] the elements, as shown in Figure 6.1.

x x x x0 1 k 1 k

e e e1 k n

x = 0
xn

x = 1

Figure 6.1: Subdivision of the interval [0, 1] in elements.

The solution u is approximated by a piecewise (lower order) polynomial defined
element-wise. The most simple approximation is piecewise linear per element.
Figure 6.2 shows a typical approximation ũ of a function u by a piecewise linear
polynomial. Note that the boundary condition u(0) = 0 is already satisfied by
ũ(0) = 0.

u

u

u

u

x x xn 1 n0x 1

0

1

n 1

n

Figure 6.2: Approximation of u(x) by ũ(x).

Exercise 6.2.2 Let ũ be a piecewise linear approximation of u. Then ũ does not belong to
C1(0, 1). Let f (x) be a continuous function.
Show that the integral in (6.2.2) remains finite when u is replaced by ũ. �

The linear interpolation polynomial of the function u(x) over the element ek is
defined by

uk(x) =
x − xk

xk−1 − xk
u(xk−1) +

x − xk−1

xk − xk−1
u(xk) . (6.2.3)

Exercise 6.2.3 Show that Formula (6.2.3) is indeed the linear interpolation polynomial.
�

Formally speaking it is not correct to use u(xk) since u(x) is unknown. It would
be better to use ũ(xk). However, as long as there is no confusion possible, we will
omit the tilde.
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We define linear Lagrangian polynomials lk(x)

�k−1(x) =
x − xk

xk−1 − xk
; �k(x) =

x − xk−1

xk − xk−1
, (6.2.4)

and write (6.2.3) as
uk(x) = �k−1(x)uk−1 + �k(x)uk . (6.2.5)

uk denotes u(xk).

Clearly �k−1(x) and �k(x) are linear on ek and are defined by the relations

�j(xi) = δij ; i, j = k − 1, k . (6.2.6)

δij is the Kronecker delta, defined by

δij = 0 i f i �= j (6.2.7)

δij = 1 i f i = j. (6.2.8)

These relations define �j(x) uniquely (why?).

From (6.2.5) it is clear that ũ(x) is a linear function of u0, u1, ..., un so that we can
write

ũ(x) =
n

∑
j=0

uj ϕj(x) . (6.2.9)

The function ϕi(x) consist of piecewise linear Lagrangian polynomials and may be
considered as a generalized Lagrangian polynomials defined over the whole re-
gion Ω.
A typical ϕi(x) has been sketched in Figure 6.3.

x xx ii 1 i+1

x)φ (i

Figure 6.3: Example of a typical generalized Lagrangian polynomial.

ϕi is found taking all coefficients uk = 0 (i �= k) and ui = 1.

Exercise 6.2.4 Sketch the basis functions ϕ0(x) and ϕn(x). �

Note that ϕi(x) is only non-zero in the elements that contain the node xi.
It is immediately clear that ϕi(x) is defined by the following rules:

a. ϕi(x) is linear in each element.
b. ϕi(xj) = δij.

(6.2.10)

Since u0 = 0, (6.2.9) can be written as

ũ(x) =
n

∑
j=1

uj ϕj(x) . (6.2.11)

The basis function ϕ0(x) will be used for non-homogeneous boundary conditions
(see Section 6.2.4).
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Theorem 6.2.1 Suppose that an equidistant grid is used (xi+1 − xi = h). The system
of Ritz equations (6.1.7) with the basis functions defined by (6.2.10) leads to the following
system of equations:

1

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1 ©

−1 2 −1
. . .

. . .

© −1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

un

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

...

fn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.2.12)

with fi =
1∫

0

f (x)ϕi(x) dx.

Exercise 6.2.5 Prove Theorem 6.2.1. �

Exercise 6.2.6 Compare system (6.2.12) with the system obtained by the FDM. �

6.2.3 Numerical integration

The right-hand-side vector of (6.2.12) contains an integral over a function f (x).
In general one can not compute such an integral analytically, so a numerical ap-
proximation is required. Since we are integrating over each element separately an
obvious choice is to use a numerical rule based on the same element.

Well-known integration rules are for example

mid-point rule:

xk∫
xk−1

g(x) dx ≈ (xk − xk−1)g(xk−1/2) , (6.2.13)

trapezoid rule:

xk∫
xk−1

g(x) dx ≈ xk − xk−1

2
{g(xk−1) + g(xk)} , (6.2.14)

Simpson’s rule:

xk∫
xk−1

g(x) dx ≈ xk − xk−1

6
{g(xk−1) + 4g(xk−1/2) + g(xk)} .

(6.2.15)

All these rules can be written in the general form:

xk∫
xk−1

g(x) dx ≈
r

∑
k=1

wkg(vk) , (6.2.16)

with r the number of quadrature points,
wk the weights, and
vk quadrature points.

Exercise 6.2.7 Give r, wk and vk for the midpoint rule, the trapezoid rule and Simpson’s
rule. �

Another class of integration rules of the shape (6.2.16) are the Gaussian rules. These
methods are characterized by the fact that integration points and weights are cho-
sen such that the highest order of accuracy is reached with a particular number of
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integration points. Weights and integration points of Gaussian integration rules
can be found in various text books, like for example [50] and [37].

fi in (6.2.12) is defined as

1∫
0

f (x)ϕi(x) dx =

xi∫
xi−1

f (x)ϕi(x) dx +

xi+1∫
xi

f (x)ϕi(x) dx . (6.2.17)

The integrand g(x) in (6.2.17) is defined by f (x)ϕi(x). We could use every possible
integration rule of type (6.2.16) to compute (6.2.17).
We consider integration over the element [xk−1, xk]. In the Finite Element Method,
one represents the numerical solution in terms of a linear combination of basis
functions. For the case of linear basis functions, one approximates the function
g(x) by linear interpolation, that is

g(x) ≈ g(xk−1)ϕk−1(x) + g(xk)ϕk(x), (6.2.18)

over the interval [xk−1, xk]. Subsequently, integration over [xk−1, xk] gives

xk−1∫
xk

g(x) dx ≈
xk−1∫
xk

g(xk−1)ϕk−1(x) + g(xk)ϕk(x) dx (6.2.19)

= g(xk−1)

xk−1∫
xk

ϕk−1(x) dx + g(xk)

xk−1∫
xk

ϕk(x) dx. (6.2.20)

Using linearity of the basis functions and the relation ϕi(xj) = δij, we get

xk−1∫
xk

g(x) dx ≈ xk − xk−1

2
(g(xk−1) + g(xk)). (6.2.21)

Similar rules are derived for higher order basis functions with more quadrature
points. Imagine that one integrates over interval [xk−l, xk+m], l, m ≥ 0, l · m �= 0.
Let this interval contain nodes xk−l , xk−l+1, . . . , xk+m, then using the basis func-
tions ϕk−l , ϕk−l+1, . . . , ϕk+m one can write the following interpolating approxima-
tion for g(x)

g(x) ≈
k+m

∑
p=k−l

g(xp)ϕp(x). (6.2.22)

This interpolation is substituted into the integral over g(x)

xk+m∫
xk−l

g(x) dx ≈
k+m

∑
p=k−l

g(xp)

xk+m∫
xk−l

ϕp(x) dx. (6.2.23)

This type of quadrature based on interpolation on the FEM basis functions is called
Newton-Cotes rule.

Theorem 6.2.2 The Newton-Cotes rule applied to (6.2.12), the right-hand side vector can
be written as

h

⎡⎢⎢⎢⎢⎢⎣
f (x1)
f (x2)

...
f (xn−1)
f (xn)/2

⎤⎥⎥⎥⎥⎥⎦ . (6.2.24)
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Exercise 6.2.8 Prove Theorem 6.2.2. �

Note that the Newton-Cotes rule applied for a linear approximation in R1 is iden-
tical to the trapezoid rule. If a quadratic approximation is used this rule is identical
to Simpson’s rule.

Not only the type of interpolation, also the type of integration rule influences the
accuracy of the solution. This subject will be considered in Section 8.7.

6.2.4 Boundary conditions

In our example (6.2.1) we have seen how homogeneous boundary conditions had
to be treated. In summary:

- homogeneous natural boundary conditions pose no problem at all. They are
an implicit part of the minimization problem.

- homogeneous essential boundary conditions fix the parameters on the bound-
ary. The corresponding interpolation functions are not used as basis func-
tions. In this way all basis functions satisfy the essential boundary condi-
tions.

Non-homogeneous boundary conditions require only a small adaptation. We shall
demonstrate this by extending example (6.2.1) with non-homogeneous boundary
conditions:

−d2u

dx2
= f (x) ,

u(0) = a , (6.2.25)

du

dx
(1) = b .

The solution of (6.2.25) satisfies the minimization problem

min
u∈Σ

J[u] =

1∫
0

{1

2
(

du

dx
)2 − u(x) f (x)} dx − bu(1) , (6.2.26)

Σ : {u | u sufficiently smooth; u(0) = a}
Exercise 6.2.9 Show that the solution of (6.2.25) satisfies the minimization problem (6.2.26).
�

In order to apply Ritz’s method we define

ũ(x) =
n

∑
j=0

uj ϕj(x) =
n

∑
j=1

uj ϕj(x) + u0 ϕ0(x) (6.2.27)

Again we use the linear Lagrangian polynomials �i(x) as basis functions, so ϕi(x)
is defined by (6.2.10). Now it is clear that u0 = a (why?).
If we use the approximation (6.2.27), the Ritz equations corresponding to (6.2.26)
are equal to

n

∑
j=1

uj

1∫
0

dϕi

dx

dϕj

dx
dx =

1∫
0

f ϕi dx − u0

1∫
0

dϕi

dx

dϕ0

dx
dx + bϕi(1) (6.2.28)

i = 1, 2, ..., n .
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1

h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

u2
...

un−1

un

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0/2
f1

f2
...

fn−1

fn/2 + b/h

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figure 6.4: System of equation before applying essential boundary conditions.

Exercise 6.2.10

a. Derive (6.2.28).

b. Why is i = 0 not part of (6.2.28)?

c. Which of the functions ϕi(x) is non-zero in x = 1?

�

From Formula 6.2.28 it will be clear that the non-homogeneous essential boundary
condition gives a contribution to the right-hand side. To compute this contribution
we first build the matrix and right-hand side as if there are no essential bound-
ary conditions (see Figure 6.4). Following Exercise 6.2.10 row 1 (corresponding to
ϕi = ϕ0), must be removed. Since the matrix must be square also column 1 must
be removed. This is done by multiplying this column by the given value u0 and
subtracting it from the right-hand side as sketched in Figure 6.5.

u0
++

1
h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

u2
...

un−1

un

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0/2
f1

f 2
...

fn−1

fn/2 + b/h

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0/h
−u0/h

0
...
·
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figure 6.5: Remove row 1. Multiply column 1 by u0 and put it into the right-hand
side.

The result of this operation is in Figure 6.6. The inhomogeneous natural boundary

1

h

⎡⎢⎢⎢⎢⎢⎣
2 −1

−1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u1

u2
...

un−1

un

⎤⎥⎥⎥⎥⎥⎦ = h

⎡⎢⎢⎢⎢⎢⎣
f1

f2
...

fn−1

fn/2 + b/h

⎤⎥⎥⎥⎥⎥⎦− u0

h

⎡⎢⎢⎢⎢⎢⎣
−1
0
...

0

⎤⎥⎥⎥⎥⎥⎦
Figure 6.6: System of equations after application of essential boundary conditions.

condition also contributes to the right-hand side. This contribution is an immedi-
ate consequence of the minimization problem.
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6.2.5 Element matrices and element vectors

In order to construct the matrix in (6.2.12) it was necessary to evaluate the integrals
in (6.1.11). Since ϕi(x) is defined in an element-wise manner, the natural way to
do this is by an element-wise way.

1∫
0

dϕi

dx

dϕj

dx
dx =

n

∑
k=1

∫
ek

dϕi

dx

dϕj

dx
dx . (6.2.29)

So instead of computing the left-hand side for all i and j, one might first compute
all integrals ∫

ek

dϕi

dx

dϕj

dx
dx , (6.2.30)

for all i and j and add these integrals afterwards to get (6.2.29). This seems a very
complicated way to compute the integrals. However at most 4 of the integrals in
(6.2.30) are different from zero (Why?). We store these four integrals in a small
matrix, the element matrix:

Sek =

⎡⎢⎣
∫
ek

dϕk−1
dx

dϕk−1
dx dx

∫
ek

dϕk−1
dx

dϕk
dx dx∫

ek

dϕk
dx

dϕk−1
dx dx

∫
ek

dϕk
dx

dϕk
dx dx

⎤⎥⎦ . (6.2.31)

In the same way we create the element vector:

fek =

⎡⎢⎣
∫
ek

f (x)ϕk−1(x) dx∫
ek

f (x)ϕk(x) dx

⎤⎥⎦ . (6.2.32)

Once all element matrices and vectors are computed, it is a matter of addition to
compute the large matrix S and the large right-hand side F. The main advantage
of this approach is that all information of the minimization problem, the type of
approximation in the element as well as the numerical integration rule applied, is
stored locally.
To create the large matrix it is sufficient to know which unknowns are present in
the element and to which entries the entries of the element matrix must be added.
This is called the topology of the problem. The same holds for the large vector on
the right-hand side.

This is a big advantage of the FEM. Once the region is subdivided into elements,
it is sufficient to give a generic algorithm for the contributions of an arbitrary el-
ement. There is no need to worry about neighboring elements. Especially for
more-dimensional unstructured grids, this is very attractive.

6.2.6 Assembly of the large matrix and vector

We have seen that all information for the FEM is stored in element matrices, ele-
ment vectors and problem topology. The question is now: how can we construct
the large matrix and vector from this information. The process of creating the large
matrix and vector is known as assembly. To demonstrate this process we reuse
minimization problem (6.2.2).
We consider the subdivision of the region [0, 1] into 4 elements as shown in Fig-
ure 6.7. Element ei is defined by ei = [xi−1, xi] and the nodes are numbered from 0
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x x x x x

e e e e

0 1 2 3 4

1 2 3 4

Figure 6.7: Subdivision of [0, 1] into 4 elements, and corresponding numbering of
nodes and elements.

to 4. The unknowns have in this special case exactly the same numbering, where
we know that u0 = 0, so that the real unknowns are numbered from 1 to 4. In first
instance the large matrix has size (5 × 5) and the large vector (5 × 1). The actual
essential boundary condition is eliminated afterwards. The problem topology of
this case is very simple; each element contains two unknowns.

e1 : (0, 1) ,
e2 : (1, 2) ,
e3 : (2, 3) ,
e4 : (3, 4) .

(6.2.33)

In the first step the large matrix and vector are cleared:

1 2 3 4 5
↓ ↓ ↓ ↓ ↓

S0 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
← 1
← 2
← 3
← 4
← 5

f0 =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦ .
(6.2.34)

The element matrix for an arbitrary element ek has shape

Sek =
1

xk − xk−1

[
1 −1

−1 1

]
. (6.2.35)

We apply the Newton-Cotes rule, to obtain the element vector

fek =
xk − xk−1

2

[
f (xk−1)

f (xk)

]
. (6.2.36)

For the sake of simplicity we assume an equidistant grid with step size
xk − xk−1 = h.

Adding the first element matrix and right-hand side to (6.2.34) gives

S1 =
1

h

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , f1 =
h

2

⎡⎢⎢⎢⎢⎣
f (x0)
f (x1)

0
0
0

⎤⎥⎥⎥⎥⎦ . (6.2.37)

Next we add Se2 and f e2 to S1 and f 1:

S2 =
1

h

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0

−1 2 −1 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , f2 =
h

2

⎡⎢⎢⎢⎢⎣
f (x0)

2 f (x1)
f (x2)

0
0

⎤⎥⎥⎥⎥⎦ . (6.2.38)
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Repeating this process for e3 and e4 gives:

S = S4 =
1

h

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ , f = f4 =
h

2

⎡⎢⎢⎢⎢⎣
f (x0)

2 f (x1)
2 f (x2)
2 f (x3)
f (x4)

⎤⎥⎥⎥⎥⎦ . (6.2.39)

This is of course the same expression as (6.2.12) and (6.2.24).
After the elimination of u0 = 0 as described in Figure 6.6 the matrix, S, and the
right-hand side, f, become

S =
1

h

⎡⎢⎢⎣
2 −1

−1 2 −1
−1 2 −1

−1 1

⎤⎥⎥⎦ , f =
h

2

⎡⎢⎢⎣
2 f (x1)
2 f (x2)
2 f (x3)
f (x4)

⎤⎥⎥⎦ . (6.2.40)

This construction seems very long-winded, especially for such a simple one di-
mensional problem. However, it is very well suited for computer implementation.
All one needs is a topology formed by a subdivision in elements, as well as a pro-
cedure to compute an element matrix and element vector for an arbitrary element.
The rest is a matter of book keeping. How complicated the mesh may be, the as-
sembly process is always the same. All finite element codes work according to this
principle.

6.2.7 Boundary conditions and assembly

We would like to apply the same procedure as in Section 6.2.6, even in the case of
non-homogeneous boundary conditions. To that end we consider the DE (6.2.25)
with corresponding minimization problem (6.2.26).

In the right-hand side of (6.2.28) we see two extra terms compared to (6.1.11):

−u0

1∫
0

dϕi

dx

dϕ0

dx
dx + bϕi(1) . (6.2.41)

The integral in the first of these terms is already present in the element matrix of
element e1:

Se1 =

⎡⎢⎣
∫
e1

dϕ0
dx

dϕ0
dx dx

∫
e1

dϕ1
dx

dϕ0
dx dx∫

e1

dϕ1
dx

dϕ0
dx dx

∫
e1

dϕ1
dx

dϕ1
dx dx

⎤⎥⎦ . (6.2.42)

If we skip the first row of Se1 and multiply the remaining part of the first column
by u0 and subtract this term of the right-hand side vector, then we get precisely the
first term in (6.2.41).
This step can easily be performed by a finite element program, provided point 0 is
marked as a point with essential boundary condition.
So, even if the first row of Se1 is not used, it is conceptually simpler always to create
a 2 × 2 matrix for all elements ek.
The term −bϕ(1) only influences the element vector in the last element. However,
also in this case it is better not to worry about boundary conditions in the element
vector.

In order to create this extra term we introduce an extra boundary element (in this
case a point element), consisting of 1 point (x = 1) only. This element is solely
meant to incorporate the term bϕi(1)
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Exercise 6.2.11 Show that the element matrix and element vector for the boundary con-
dition

du

dx

∣∣∣∣
(x=1)

= b

are given by:
Se = [0] , fe = [b] . (6.2.43)

�

The elimination of the essential boundary conditions can be described in the fol-
lowing formulae.

Suppose we renumber the unknowns such that we have first all non-prescribed un-
knowns (ui) (also called degrees of freedom) and subsequently all unknowns given
by the essential boundary conditions (ub).

The system of equations can be written as:[
Sii Sib

Sbi Sbb

] [
ui

ub

]
=

[
fi

fb

]
. (6.2.44)

Since ub is given (6.2.44) can be reduced to

Siiui = fi − Sibub , (6.2.45)

and this is the actual system to be solved.

The last set of equations in (6.2.44) contains also some useful information. Suppose
that ub is not given, but that the flux (natural boundary condition) is prescribed.
In that case the last equation would be:

Sbiui + Sbbub = fb + b , (6.2.46)

where b is the given flux (see 6.2.43)).

The consequence is that if ub is given and ui has been solved from (6.2.44), the flux
can be approximated by

b = Sbiui + Sbbub − fb . (6.2.47)

This term is also known under the name reaction force. It represents the flux through
the boundary with essential boundary conditions.

In the next Section we shall extend our example to two-dimensions.

6.2.8 Periodical boundary conditions

Consider the Poisson equation with periodical boundary conditions.

d2u

dx2
= f , u(0) = u(1),

du(0)

dx
=

du(1)

dx
. (6.2.48)

Theorem 6.2.3 The minimization problem corresponding to (6.2.48) is given by

min
u∈Σ

J[u] =

1∫
0

{1

2

(
du

dx

)2

− f (x)u(x)} dx , (6.2.49)

Σ : {u | u sufficiently smooth; u(0) = u(1)} .

Exercise 6.2.12 Prove Theorem 6.2.3. �
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Note that the boundary condition
du(0)

dx = du(1)
dx is a natural boundary condition for

this minimization problem.
In order to apply the Ritz method we set

un(x) =
n

∑
j=0

aj ϕj(x) , (6.2.50)

with a0 = an. Hence the unknowns in the first and last node are identified. By
doing so, the first and last element are coupled to each other, which is precisely the
idea of periodical boundary conditions.

Exercise 6.2.13 Compute the matrix and right-hand side for the solution of 6.2.49 using
linear basis functions and Newton Cotes quadrature. �

6.2.9 The structure of finite element packages

In the previous sections it has been made clear that the finite element method is
well suited for automatization. As a consequence a lot of (commercial) packages
have been developed over the last decades. Most packages subdivide the finite
element process in three steps.

• Preprocessing: usually the mesh generation

• Solving: the actual FEM

• Postprocessing: showing the results

The solve part consists globally of the following steps:

Read input and mesh
Compute the structure of the large matrix from the topology
Clear large matrix and vector
for all elements (including boundary elements) do

Compute element matrix and vector
Add element matrix to large matrix
Add element vector to large vector

end for
Apply essential boundary conditions
Solve system of equations
Write results for postprocessing

The crucial step is the computation of element matrix and vector. In fact this part
defines the actual differential equation and type of approximation.
In general one uses preprogrammed finite element subroutines to compute ele-
ment matrix and vector, however, it is also possible that the user supplies his own
element matrix and vector. In this way she may use the general concept of the
FEM, and still solve her own specific problem.

6.3 The finite element method in R
2

6.3.1 The Poisson equation in R2

We have demonstrated the FEM for the one-dimensional Poisson equation using
linear interpolations. And even that simple equation showed many of the issues of
the FEM. In this section we shall extended that example to R2. More general cases
will be the subject of Chapter 7.
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Consider Poisson’s equation defined on a bounded region Ω ⊂ R2 with boundary
Γ = Γ1 ∪ Γ2 ∪ Γ3.

−Δu = f , x ∈ Ω (6.3.1)

with boundary conditions

u = g1(x) , x ∈ Γ1

∂u

∂n
= g2(x) , x ∈ Γ2 (6.3.2)

αu +
∂u

∂n
= g3(x) , x ∈ Γ3 (α ≥ 0) .

Ω

Γ
Γ

Γ1

2

3

Figure 6.8: Region Ω with boundary Γ = Γ1 ∪ Γ2 ∪ Γ3.

The minimization problem corresponding to (6.3.1), (6.3.2) is given by

min
u∈Σ

J[u] (6.3.3)

with

J[u] =
∫
Ω

{1

2
|∇u|2 − u f} dΩ −

∫
Γ2

g2u dΓ −
∫
Γ3

g3u dΓ +
1

2

∫
Γ3

αu2 dΓ

and Σ = {sufficiently smooth | u = g1|Γ1
}.

Exercise 6.3.1 Prove that the PDE formulation (6.3.1) together with (6.3.2) is ’equiva-
lent’ to the minimization form (6.3.3). �

To provide a general framework we first apply Ritz’s method formally.

First we choose a set of basis functions ϕi(x) ∈ Σ0 with

Σ0 = {u | u|Γ1
= 0} . (6.3.4)

Next we choose an arbitrary but known function uB that satisfies

uB(x) = g1(x), x ∈ Γ1 . (6.3.5)

The solution u(x) is approximated by a finite dimensional subset of Σ:

un(x) =
n

∑
j=1

uj ϕj(x) + uB(x) (6.3.6)
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Figure 6.9: Subdivision in triangles.

Clearly we have un(x) ∈ Σ. The set of Ritz equations to approximate the mini-
mization problem (6.3.3) by (6.3.6) is given by:

n

∑
j=1

uj{
∫
Ω

(∇ϕi · ∇ϕj) dΩ +
∫
Γ3

αϕi ϕj dΓ} =
∫
Ω

f ϕi dΩ +
∫
Γ2

g2ϕi dΓ +

∫
Γ3

g3ϕi dΓ −
∫
Ω

∇ϕi · ∇uB dΩ −
∫
Γ3

αϕiuB dΓ . (6.3.7)

Exercise 6.3.2 Derive (6.3.7). �

The next step is to provide FEM basis functions. To this end we subdivide the
region into elements and define a polynomial approximation on each element.

6.3.2 Linear elements in R2

The extension of the linear line element in R1 is the triangle in R2. Figure 6.9
shows a typical subdivision of a region into triangles. In order to construct a linear
polynomial on each triangle we need 3 parameters. A natural choice is to use the
function values in the three vertices of the triangle (Figure 6.10).

y
x

1 2

3

x x

x

Figure 6.10: Linear triangle with nodal points.

This has the added benefit of making the approximation continuous across element
boundaries.
Following the same procedure as in R1, it will be clear that the corresponding basis
functions ϕi have the properties:

1) ϕi(x) is linear per triangle , (6.3.8)

2) ϕi(xj) = δij .
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A typical basis function is sketched in Figure 6.11.

Figure 6.11: Sketch of a typical linear basis function.

(6.3.8) defines the basis functions implicitly. In order to compute the integral
in (6.3.7), it is necessary to have an explicit expression per element. Consider the
triangle in Figure 6.10).
A linear polynomial is defined by

ϕi(x) = αi + βix + γiy . (6.3.9)

(6.3.8) defines 3 equations for each i to compute the parameters αi, βi, γi. Substitu-
tion of (6.3.8) in (6.3.9) leads to the following system of linear equations:⎡⎣ 1 x1 y1

1 x2 y2

1 x3 y3

⎤⎦ ⎡⎣ α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎤⎦ =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (6.3.10)

Exercise 6.3.3 Verify (6.3.10) �

The system of equations (6.3.10) has a solution if the coefficient determinant Δ (see
(6.3.11)) does not vanish

Δ =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ . (6.3.11)

Δ in (6.3.11) can be expressed as

Δ = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) , (6.3.12)

which is twice the area of the triangle in Figure 6.10, as will be shown in Section
8.2.

Exercise 6.3.4 Prove (6.3.12).
Hint: subtract the first row from the second and the third row. �

If the orientation of the nodes is counterclockwise Δ is positive, otherwise it is
negative.

Exercise 6.3.4 shows that the system is regular as long as the area of the triangle
differs from 0.
The solution of system of equations (6.3.10) is given by

β1 =
1

Δ
(y2 − y3) , β2 =

1

Δ
(y3 − y1) , β3 =

1

Δ
(y1 − y2) ,

γ1 =
1

Δ
(x3 − x2) , γ2 =

1

Δ
(x1 − x3) , γ3 =

1

Δ
(x2 − x1) , (6.3.13)

αi = 1 − βixi − γiyi .
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Exercise 6.3.5 Show that (6.3.13) is the solution of (6.3.10).
Hint: formulate the equations for α1, β1 and γ1 and subtract the first equation from the
second and third one. Repeat this process for the other unknowns. �

Now we have all ingredients to evaluate the integrals in formula (6.3.7). As we
have seen in Section 6.2.5, we only need to compute the element matrix and ele-
ment vector.
First of all we shall consider the case that α, g2 and g3 are all equal to zero, so that
all boundary integrals in (6.3.7) vanish. Later on we shall pay attention to these
boundary integrals in inhomogeneous boundary problems.
The element matrix for the linear triangle corresponding to (6.3.7) is given by

Sek =

⎡⎣ S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤⎦ , (6.3.14)

With Sij =
∫
ek

∇ϕi · ∇ϕj dΩ.

Exercise 6.3.6 Show that (6.3.14) is the element matrix corresponding to (6.3.7). �

From (6.3.9) - (6.3.14) it follows that

Sij =
|Δ|
2

(βiβ j + γiγj) . (6.3.15)

The element vector for the linear triangle corresponding to (6.3.7) is given by:

fek =

⎡⎣ f1

f2

f3

⎤⎦ , (6.3.16)

with

fi =
∫
ek

f (x)ϕi(x) dΩ . (6.3.17)

Exercise 6.3.7 Verify (6.3.16) and (6.3.17). �

We shall have to evaluate (6.3.17) numerically.

6.3.3 Numerical integration in Rn

Numerical integration in R1 has been the subject of Section 6.2.3. In this section we
consider the more general case of integration over triangles in R2 or tetrahedrons
in R3. Integration over other types of elements will be the subject of Section 8.7.
In R2 and R3 we can derive integration rules of the same type as mid-point rule,
trapezoidal rule or Simpson’s rule, by integrating polynomials of a certain degree
exactly. Besides that, for these triangles and tetrahedrons it is possible to construct
Gaussian integration rules. Weights and integration points can be found in numer-
ous text books. (See for example [50]).

Definition 6.3.1 A simplex in R
n is the convex hull of n + 1 points in R

n.

A simplex in R1 is an interval, in R2 a triangle and in R3 a tetrahedron. �
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The next theorems gives a general formula for integration of powers of linear basis
functions over simplices. It is very useful.

Theorem 6.3.1 Let S be a triangle in R2 and let Δ be the determinant defined by

Δ =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ , (6.3.18)

with x1, x2, x3 the vertices of S.

Let λi(x) be the linear basis functions over S defined by

λi(x) linear

λi(xj) = δij i, j,= 1, 2, 3 . (6.3.19)

Then the following general integration rule holds:∫
S

λ
m1
1 λm2

2 λ
m3
3 =

m1!m2!m3!

(m1 + m2 + m3 + 2)!
|Δ| ,

for all mi ≥ 0.

Proof: See Holand and Bell (1969)[20], page 84.

Exercise 6.3.8 Use Theorem 6.3.1 to show that∫
S

λi =
|Δ|
6

. (6.3.20)

�

This theorem can be extended to n dimensions:

Theorem 6.3.2 Let S be a simplex in R
n and let Δ be the determinant defined by

Δ =

∣∣∣∣∣∣∣∣∣
1 x1,1 x2,1 · · · xn,1

1 x1,2 x2,2 · · · xn,2
...

...
...

...
1 xn+1,1 xn+1,2 · · · xn+1,n

∣∣∣∣∣∣∣∣∣ , (6.3.21)

with x1, x2, · · · , xn+1 the vertices of S, and xi,j the jth component of xi.

Let λi(x) be the linear basis functions over S defined by

λi(x) linear

λi(x
j) = δij i, j,= 1, 2, · · · , n + 1 . (6.3.22)

Then the following general integration rule holds:∫
S

λ
m1
1 λ

m2
2 · · · λ

mn+1
n+1 dΩ =

m1!m2! · · ·mn+1!

(∑
i

mi + n)!
|Δ| ,

for all mi ≥ 0.
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Exercise 6.3.9 Apply Theorem 6.3.2 to show that

x2∫
x1

λi dx =
h

2
. (6.3.23)

�

Theorem 6.3.3 Let λi(x) be defined as in (6.3.22). Then

n+1

∑
i=1

λi(x) = 1 . (6.3.24)

Exercise 6.3.10 Prove Theorem 6.3.3.
�

Exercise 6.3.11 Show that
∫
S

dΩ = |Δ|
n! .

Hint: use Theorem 6.3.2. �

Exercise 6.3.12 Find the midpoint rule for a triangle and a tetrahedron.
Hint: the midpoint rule is a one point integration rule that is exact for linear polynomials.
Determine this point by integrating the linear basis functions. �

Exercise 6.3.13 Prove that the Newton-Cotes rule for a triangle in R2 with linear basis
functions is given by ∫

S

g(x) dΩ =
|Δ|
6
(g(x1) + g(x2) + g(x3)) . (6.3.25)

Hint: use Theorem 6.3.2. �

Exercise 6.3.14 Show that if the Newton-Cotes rule is applied to (6.3.16), (6.3.17), the
element vector is given by

fek =
|Δ|
6

⎡⎣ f (x1)
f (x2)
f (x3)

⎤⎦ . (6.3.26)

�

6.3.4 Boundary conditions

The way in which essential boundary conditions are treated is independent of the
dimension of the space. With respect to natural boundary conditions we follow
a similar approach as in R1. In that case we introduced point elements to treat
the extra term bϕi(1). In equation (6.3.7) we find four boundary integrals, three of
which are related to natural boundary conditions.∫

Γ3

αϕi ϕj dΓ , (6.3.27)

∫
Γ2

g2 ϕi dΓ , (6.3.28)

∫
Γ3

g3 ϕi dΓ . (6.3.29)
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Since we use linear triangles we actually approximate the boundary by straight
lines. In Section 8.7 we shall return to the consequences of this approximation.

For the moment we assume that the boundary is exactly given by the straight
boundary lines of the subdivision. Of course it is possible to add the contribution
of the integrals (6.3.27)-(6.3.29) to all element matrices and vectors that correspond
to boundary triangles that have a side in common with Γ2 or Γ3. From a computa-
tional point of view this is not so desirable because this means that not all triangles
have the same type of element matrix and element vector. So following our dis-
cussion in R1 it is natural to introduce extra line elements just for the computation
of the integrals in (6.3.27)-(6.3.29). These line elements (also called boundary ele-
ments) are implicitly defined by the boundary and the subdivision in triangles, see
for example Figure 6.12.

Figure 6.12: Subdivision in triangles and line elements.

A typical line element is sketched in Figure 6.13.

1
x

2
x

Figure 6.13: Example of a linear line element.

Only two base functions differ from zero on this element (why?), so the element
matrix must have size (2 × 2) and the element vector (2 × 1). The element matrix
for the boundary elements along Γ3 is given by

Sek =

[
S11 S12

S21 S22

]
,

with

Sij =
∫
ek

αϕi ϕj dΓ . (6.3.30)

The element vector for the Γ3 boundary elements are defined by

fek =

[
f1

f2

]
, fi =

∫
ek

g3ϕi dΓ .

Exercise 6.3.15 Give the line element matrices and vectors along Γ2. �
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To compute the line integrals along element ek we map the element (x1, x2) onto
(0, h), with h the length of the element given by

h =
√
(x2 − x1)2 + (y2 − y1)2 . (6.3.31)

Hence

Sij =
∫
ek

αϕi ϕj dΓ =

h∫
0

α(t)ϕi(t)ϕj(t) dt, (6.3.32)

where t = 0 corresponds to x1 and t = h to x2.
Application of Newton-Cotes to (6.3.32) gives

Sij =
h

2
α(ti)δij = α(xi)δij . (6.3.33)

Exercise 6.3.16 Prove (6.3.33). �

In the same way we can approximate the elements of the element vector along Γ3

by

fi =
h

2
g3(xi). (6.3.34)

Exercise 6.3.17 Prove (6.3.34). �

Exercise 6.3.18 Compute the element matrix and element vector for the line elements
along Γ2. �

In case of essential boundary conditions we have to choose uB(x). It is natural to
approximate uB(x) by a linear combination of basis functions corresponding to the
points on Γ1. Hence

uB(x) =
n+nB

∑
j=n+1

ujφj(x) (6.3.35)

and the approximation can be written as

un =
n+nB

∑
j=1

ujφj(x), (6.3.36)

where the last nB parameters uj are prescribed. So Equation (6.3.7) reduces to

n+nB

∑
j=1

uj{
∫
Ω

(∇ϕi · ∇ϕj) dΩ +
∫
Γ3

αϕi ϕj dΓ} =
∫
Ω

f ϕi dΩ +
∫
Γ2

g2 ϕi dΓ +

∫
Γ3

g3ϕi dΓ , i = 1, 2, . . . , n . (6.3.37)

The implementation of essential boundary conditions is exactly the same as de-
scribed in (6.2.44) and (6.2.45).

6.4 Theoretical remarks

6.4.1 Smoothness requirements

In Section 5.6 we have seen that it is necessary that integrals like
∫
Ω

u2
x dΩ and∫

Ω

u2
y dΩ must exist and be finite. This must also be true for the approximation and

hence for the basis functions ϕi(x).
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x

ϕ
i

Figure 6.14: One-dimensional basis function ϕi(x).

If we consider the one-dimensional basis function ϕi(x) sketched in Figure 6.14,
then we see that this function is infinitely often differentiable in the interior of
each element, but not differentiable on some of the element boundaries (why?).
On these boundaries the basis function is continuous. If we split the integral

1∫
0

dϕi

dx
dx (6.4.1)

into
1∫

0

dϕi

dx
dx =

m

∑
k=1

∫
ek

dϕi

dx
dx , (6.4.2)

then each of the integrals exists and is finite. This operation is allowed as long as
the contribution for the element boundaries in equal to zero.
This is the case if ϕi(x) is continuous since the ”length” of a point is zero, and
therefore the point has no contribution to the integral. Mathematically speaking
we say that a point has ”zero measure”.

However, if ϕi(x) would be discontinuous like the one sketched in Figure 6.15,
then the derivative on the element interface will be infinite. In fact the derivative
is a delta function and the contribution of the point with the discontinuity does not
vanish. The integral

∫
Ω

u2
x dΩ is no longer finite and such basis functions are not

allowed.

x

ϕ
i

Figure 6.15: Example of a discontinuous basis function.

So for a second order problem in R1 it is necessary that the basis functions are not
only piecewise smooth but also globally continuous.

In R
2 the theory is slightly more complicated but one can say in general that a basis

function that is a polynomial per element and continuous over the element bound-
aries may be used for second order problems. Discontinuous basis functions are in
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general not allowed. For fourth order problems we have to require continuity of
the first derivative (why?).

Elements with basis functions that satisfy the continuity requirement are called
conforming, and the basis functions are referred to as admissible. Elements not
satisfying this requirement are non-conforming. Sometimes they are used for special
applications. See Section 8.8.1.

Exercise 6.4.1 Show that the two-dimensional basis function derived in Section 6.3.2 is
admissible. �

6.4.2 Mathematical theory of FEM

Consider the linear equation

Lu = f u ∈ Σ. (6.4.3)

The corresponding minimization problem is defined as (see 5.9.9)

min
u∈Σ

J[u], with J[u] =
1

2
‖u‖2

L − (u, f ). (6.4.4)

We have seen that Ritz’s method may be formulated as (see 6.1.3)

min
uh∈Σh

J[uh], with Σh a finite dimensional subspace of Σ. (6.4.5)

Now we can prove the following theorem:

Theorem 6.4.1 Let û be the solution of (6.4.4) and ûh be the solution of (6.4.5) then

(û, v)L = ( f , v) ∀v ∈ Σ. (6.4.6)

(ûh, vh)L = ( f , vh) ∀vh ∈ Σh. (6.4.7)

Proof Equation (6.4.6) follows immediately by substituting u = û + εv in (6.4.4),
differentiating with respect to ε and putting ε = 0 like in the derivation of the
Euler-Lagrange equations. According to (6.1.19) Ritz’s equations Su = f can be
written as

n

∑
j=1

uj(ϕi, ϕj)L = ( f , ϕi) (i = 1, ..., n). (6.4.8)

Let vh ∈ Σh be given by vh =
n

∑
i=1

vi. We take the inner product of Su = f with the

vector v = (v1, v2, ..., vn) to get

n

∑
i=1

n

∑
j=1

(ϕi, ϕj)Lujvi =
n

∑
i=1

vi( f , ϕi). (6.4.9)

Using the linearity of the inner product we get

(
n

∑
i=1

vi ϕi,
n

∑
j=1

uj ϕj)L = ( f ,
n

∑
i=1

vi ϕi). (6.4.10)

And this of course equal to

(ûh, vh)L = ( f , vh) ∀vh ∈ Σh. (6.4.11)

Since vh is arbitrary we have proved (6.4.7).

With Theorem 6.4.1 we can prove the following



6. The numerical solution of minimization problems 125

Theorem 6.4.2 Let û be the solution of (6.4.4) over Σ, ûh be the solution of (6.4.5) and let
ũ be the interpolation of û by the FEM basis functions. So ũ is defined by

ũ =
n

∑
k=1

û(xk, yk)ϕk, (6.4.12)

with (xk, yk) the nodes of the FEM approximation. Then

‖û − ûh‖2
L ≤ ‖ũ − û‖2

L. (6.4.13)

In other words the error in finite element solution is smaller than the error that we would
have if we interpolate the solution by the same set of FEM basis functions, at least measured
in the energy norm.
In fact the FEM minimizes û − ûh in energy norm.

Proof:
Since vh ∈ Σ, (6.4.6) is true for each vh ∈ Σh. Subtraction of (6.4.7) from (6.4.6)
gives

(û − ûh, vh)L = 0, ∀vh ∈ Σh. (6.4.14)

Now choose

vh = û − ûh − (û − wh), with wh arbitrary ∈ Σh. (6.4.15)

Then

(û − ûh, û − ûh)L = (û − ûh, û − wh)L, ∀wh ∈ Σh. (6.4.16)

Using ab ≤ 1
2 a2 + 1

2 b2 it follows that

‖û − ûh‖2
L ≤ 1

2
‖û − ûh‖2

L +
1

2
‖û − wh‖2

L. (6.4.17)

So

‖û − ûh‖2
L ≤ ‖û − wh‖2

L, ∀wh ∈ Σh . (6.4.18)

Substitution of ũ for wh proves the theorem.

Remark: this error estimate is only true if we use exact integration and also the
region is completely identical to the union of all finite elements. In other words
when we use linear triangles like in this chapter, the boundary of the region must
consist of piecewise straight lines in order that this error estimate holds (i.e. be
polygonal).

6.4.3 Approximation errors

By applying the FEM we make a number of errors. First of all we approximate the
solution by a polynomial. This produces an approximation error. We might expect
that a higher order polynomial reduces this error. We shall return to this subject in
Chapter 8.
Besides that we have approximated the region Ω by straight lines. This too intro-
duces an error. Finally the integrals are approximated by a numerical integration
rule. Hence another error is made.
It is clear that these errors must be in balance. Each error should be of the same
order, thus producing an optimal result. We shall return to this matter in Chapter 8.
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6.5 Summary of Chapter 6

The equivalence of a certain class of PDEs and minimization problems has been
proven in Chapter 5. A method to approximate the solution of the minimization
problem (Ritz) has been derived. The solution is approximated by a finite set of
basis functions.
The FEM is a numerical method that constructs the basis functions by subdividing
the region into elements and using a simple polynomial approximation per ele-
ment. In this chapter we have limited ourselves to 1D and 2D linear elements. The
most important property of the FEM basis functions is that they are non-zero in a
very limited number of elements.
Since all integrals are computed element-wise it is possible to store all contribu-
tions per element in an element matrix and element vector of small size. By using the
generic form of these element matrices and vectors it is very simple to construct
the large matrix and right-hand side automatically. In order to approximate inte-
grals per element, numerical integration rules are applied. The Newton-Cotes rule
derived in Section 6.2.3 is a very attractive rule since it is based on the FEM basis
functions.
Essential boundary conditions in the FEM are implemented by direct substitution.
Natural boundary conditions require boundary elements or when homogeneous,
no special arrangement at all.



Chapter 7

The weak formulation and
Galerkin’s method

Objectives

Chapter 5 showed that under certain conditions, solving a PDE is equivalent to
solving a minimization problem. For an important class of PDEs, for instance those
containing a convective term, these conditions are not met. In order to apply the
FEM for such problems, it is necessary to have an alternative formulation. This
alternative is based on the weak formulation already mentioned in Section 5.6.3.
This formulation is applicable for all kinds of PDEs. Usually it is equivalent to the
original conservation law used to derive the PDE.

To solve the weak formulation numerically, the Galerkin method is applied. This
method is a direct generalization of Ritz. In case an equivalent minimization
method exists, Ritz and Galerkin are identical. Since Galerkin is also based on
an expansion in basis functions, the FEM is immediately applicable.

As an extension we shall consider the possibility to introduce upwinding in the
FEM by using a special variant of Galerkin, the so-called streamline upwind Petrov
Galerkin method (SUPG).

7.1 The weak formulation for a symmetrical problem

7.1.1 Introduction

Let us recall the minimization problem (5.3.1) with boundary condition (5.3.2):

min
u∈Σ

I(u) =
∫
Ω

{ k

2
|∇u|2 − u f} dΩ, (7.1.1)

in which the minimization class Σ is defined by Σ = {u smooth | u|Γ = 0 }.

Γ is the complete boundary of Ω. According to (5.3.5) the solution of (7.1.1) must
satisfy ∫

Ω

{k(∇u · ∇η)− η f} dΩ = 0 , ∀η ∈ Σ. (7.1.2)

Integration by parts (5.3.7) resulted in∫
Ω

{−div (k∇u)− f}η dΩ = 0, ∀η ∈ Σ. (7.1.3)
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And finally in (5.3.8) we arrived at the differential equation:

−div (k∇u) = f , (7.1.4)

with boundary condition,
u|Γ = 0 . (7.1.5)

In the derivation of the weak formulation we follow the opposite direction. We
start with the differential equation (7.1.4), (7.1.5). Next we multiply this equation
by an arbitrary function η ∈ Σ, and we integrate over the domain Ω. This yields
exactly formulation (7.1.3). Integration by parts (Gauss’ theorem) applied to (7.1.3)
results in (7.1.2).

The arbitrary function η is known under the name test function and (7.1.2) is called
weak formulation. Strictly speaking (7.1.3) is also a form of a weak formulation, but
in this book we shall limit ourselves to those forms in which by integration by
parts the derivatives have been reduced to the lowest order possible.

Note that the form (7.1.2) is symmetric, whereas (7.1.3) is non-symmetric.

There are several reasons to introduce the weak formulation (7.1.2) instead of the
differential equation (7.1.4). First of all, it is easier to prove existence and unique-
ness of a solution satisfying (7.1.2) than for one satisfying (7.1.4), (7.1.5). It is clear
that a solution that satisfies (7.1.4), (7.1.5) is always a solution of (7.1.2). On the
other hand a solution of (7.1.2) requires only the existence of the integral over the
first derivatives, and it may be possible that the second derivative does not exist at
all. For that reason the term generalized or weak formulation is used.
The second reason to introduce the weak formulation is that it naturally leads to
the FEM. Without weak formulation we are not able to derive a FEM for general
PDEs. Of course in this specific case there is no need to use a weak formulation,
since we can use the minimization problem (7.1.1) and apply Ritz’s method.

7.1.2 Natural boundary conditions

In Section 7.1.1 we have seen a simple example with essential boundary conditions
only. Let us extend (7.1.4), (7.1.5) to the complete problem treated in Section 5.3.

So we start with the PDE (5.3.8) with boundary conditions (5.3.9) and (5.3.10):

−div (k∇u) = f , (7.1.6)

with boundary conditions,
u|Γ1

= 0 , (7.1.7)

and

k
∂u

∂n
|Γ2

= 1 . (7.1.8)

In order to derive the weak formulation we use the solution space Σ of functions
satisfying the essential boundary conditions (7.1.7): Σ = {u smooth |u|Γ1

= 0 }.

Multiplication of (7.1.6) by a test function η and integration over Ω yields:∫
Ω

{−div (k∇u)− f}η dΩ = 0, η ∈ Σ. (7.1.9)

Gauss’ theorem applied to (7.1.9), while substituting (7.1.8) gives∫
Ω

{k(∇u · ∇η)− η f} dΩ −
∫
Γ2

η dΓ = 0, ∀η ∈ Σ, (7.1.10)
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and this is precisely Equation (5.3.5). So the natural boundary condition (7.1.8)
gives rise to a boundary integral in (7.1.10) but does not influence the solution
space nor the space of test functions. In fact the natural boundary condition has

been applied by replacing k ∂u
∂n in the boundary integral on Γ2.

7.1.3 Non-homogeneous essential boundary conditions

The case of non-homogeneous essential boundary conditions has been considered
in Chapter 5. For a minimization problem there is no difficulty in applying such a
boundary condition. Already in the one-dimensional example of Sections 5.1.1 and
5.1.2, we have seen that the solution u must satisfy the non-homogeneous essential
boundary condition, but that the test function η(x) must satisfy a homogeneous
essential boundary condition.

The derivation of the minimization problem from a PDE with homogeneous bound-
ary conditions was much more complicated (see Section 5.8.3), but the final result
is simple.

From these observations it is logical to derive the weak formulation correspond-
ing to the differential equation (7.1.6) with inhomogeneous boundary conditions
by demanding that the test functions satisfy the homogeneous essential boundary
conditions.

Consider the PDE (7.1.11) with boundary conditions (7.1.12), (7.1.13),

−div (k∇u) = f , (7.1.11)

u|Γ1
= g1(x), (7.1.12)

σu + k
∂u

∂n
|Γ2

= g2(x), σ ≥ 0. (7.1.13)

In order to get the weak formulation we multiply (7.1.11) by a test function η(x) ∈
Σ = {η | η|Γ1

= 0}, and integrate over Ω.∫
Ω

η{−div (k∇u)− f} dΩ = 0. (7.1.14)

Gauss’ theorem gives:

∫
Ω

(k∇u · ∇η − f η) dΩ −
∫
Γ

k
∂u

∂n
η dΓ = 0. (7.1.15)

Since η|Γ1
= 0 and k ∂u

∂n = g2 − σu, (7.1.15) can be written as:

∫
Ω

k∇u · ∇η dΩ +
∫
Γ2

σuη dΓ =
∫
Ω

f η dΩ +
∫
Γ2

g2η dΓ ∀η ∈ Σ (7.1.16)

and

u|Γ1
= g1. (7.1.17)

(7.1.16), (7.1.17) form our weak formulation.
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7.1.4 Periodical boundary conditions

Consider the PDE (7.1.11) with boundary conditions (7.1.12) and periodical bound-
ary conditions on the opposite boundaries Γ2 and Γ3

−div (k∇u) = f , (7.1.18)

u|Γ1
= g1(x), (7.1.19)

u|Γ2
= u|Γ3

,
∂u

∂n
|Γ2

= −∂u

∂n
|Γ3

. (7.1.20)

Exercise 7.1.1 Explain the minus sign in 7.1.20 �

In order to get the weak formulation we multiply (7.1.11) by a test function η(x) ∈
Σ = {η | η|Γ1

= 0}, and integrate over Ω.∫
Ω

η{−div (k∇u)− f} dΩ = 0. (7.1.21)

Gauss’ theorem gives:∫
Ω

(k∇u · ∇η − f η) dΩ −
∫
Γ

k
∂u

∂n
η dΓ = 0. (7.1.22)

Application of the boundary conditions 7.1.19 and 7.1.20 gives∫
Ω

k∇u · ∇η dΩ =
∫
Ω

f η dΩ ∀η ∈ Σ (7.1.23)

and
u|Γ1

= g1, u|Γ2
= u|Γ3

. (7.1.24)

(7.1.23), (7.1.24) form our weak formulation.

Exercise 7.1.2 Prove 7.1.23, 7.1.24. �

The extension to non-symmetric problems is straight-forward as will be shown
in Section 7.2. The examples in this section, however, already show that the weak
formulation is much easier than deriving the corresponding minimization problem
if it exists.

7.2 The weak formulation for a non-symmetric prob-

lem

As a generalization of the preceding theory we consider the convection-diffusion
equation in two space dimensions:

−div (κ∇T) + ρcp(u · ∇T) + cT = f . (7.2.1)

T is the temperature, κ the heat conduction, ρcp the heat capacity, c some non-
negative constant and f a source term.

We assume that the boundary Γ is subdivided into three parts Γ1, Γ2 and Γ3.

On Γ1 we prescribe the essential boundary condition

T|Γ1
= g1(x). (7.2.2)
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On Γ2 the flux is given

κ
∂T

∂n
|Γ2

= g2(x). (7.2.3)

Finally on Γ3 we assume a mixed boundary condition

σT + κ
∂T

∂n
|Γ3

= g3(x), σ ≥ 0. (7.2.4)

In order to derive the weak formulation we proceed as in the symmetrical case.
Equation (7.2.1) is multiplied by a test function η satisfying the homogeneous es-
sential boundary condition η|Γ1

= 0 and integrated over the domain Ω. This
results in ∫

Ω

{−div (κ∇T) + ρcp(u · ∇T) + cT − f}η dΩ = 0. (7.2.5)

Now we apply Gauss’ theorem, but only on the second derivative. Application
to the first order term would not result in lower order derivatives, since the first
derivative of the temperature would be replaced by a first derivative of the test
function.∫

Ω

κ(∇T · ∇η) + {ρcp(u · ∇T) + cT − f}η dΩ −
∫
Γ

κ
∂T

∂n
η dΓ = 0. (7.2.6)

Substituting the boundary conditions (7.2.3) and (7.2.4) as well as the essential
boundary condition for the test function:

η|Γ1
= 0. (7.2.7)

leads to∫
Ω

κ(∇T ·∇η)+ ρcp(u ·∇T)η+ cTη dΩ+
∫
Γ3

σTη dΓ =
∫
Ω

f η dΩ+
∫
Γ2

g2η dΓ+
∫
Γ3

g3η dΓ.

(7.2.8)
(7.2.8) together with the boundary conditions (7.2.2) and (7.2.7) forms the weak
formulation of Equations (7.2.1) to (7.2.4).

We see that the highest derivative in (7.2.8) is of first order which means that it is
sufficient to require that the integrals over the first derivatives exist. Strict mathe-
matically speaking the integral over the square of the first derivatives must exist.

If we suppose the existence of a function T1(x) which is smooth enough and satis-
fies the boundary condition (7.2.2), then the weak formulation can be stated as:

Find T such that T − T1 ∈ Σ and (7.2.8) is satisfied ∀η ∈ Σ, with Σ

the space of sufficiently smooth functions that satisfy (7.2.7).

7.3 Galerkin’s method

7.3.1 Introduction

In Section (6.1) we have introduced Ritz’s method as a numerical procedure to
solve the minimization problem. The idea was based on the approximation of the
unknown solution by a finite linear combination of basis functions:

un(x) =
n

∑
j=1

aj ϕj(x), (7.3.1)
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and to substitute this in the minimization problem. Minimizing over the set of
unknown parameters aj resulted in a system of linear equations to be solved.

Before considering the general convection-diffusion equation, we start with the
symmetrical problem (7.1.4-7.1.5). The weak formulation is given in (7.1.2):∫

Ω

{k(∇u · ∇η)− η f} dΩ = 0 , ∀η ∈ Σ. (7.3.2)

Substitution of (7.3.1) in (7.3.2) gives∫
Ω

{k(∇un · ∇η)− η f} dΩ = 0 , ∀η ∈ Σ. (7.3.3)

(7.3.3) contains n unknown parameters aj. So for a unique solution we need n
equations. Since η is in the same space as u it is natural to demand that η is a linear
combination of the n basis functions ϕj(x):

η =
n

∑
i=1

bi ϕi(x). (7.3.4)

η is arbitrary, hence a natural choice is to make one of the coefficients bi equal to 1
and all others to 0. If i runs from 1 to n this results in exactly n linear equations

n

∑
j=1

aj

∫
Ω

{k(∇ϕj · ∇ϕi) dΩ =
∫
Ω

f ϕi dΩ (i = 1, ..., n). (7.3.5)

This is identical to using (7.3.4) for each bi. Why?

Mark that (7.3.5) is precisely the set of Ritz equation corresponding to the PDE
(7.1.1). This method, which is in fact a generalization of Ritz is called Galerkin’s
method.

Summarizing, the method consists of the following steps:

• Derive the weak formulation corresponding to the PDE.

• Approximate the solution by a linear combination of basis functions.

• Replace the test function by each of the basis function separately.

In mathematical terms we may say that we are solving the weak formulation in the
function space Σ, which is expanded by an infinite number of basis functions. In
Galerkin’s method we are looking for a solution in a finite dimensional subspace
of Σ.

7.3.2 Galerkin’s method applied to the convection-diffusion equa-
tion

The extension of Galerkin’s method to more general problems like for example
the convection-diffusion equation is straightforward. First we have to derive the
weak formulation. For the convection-diffusion Equation (7.2.1) with boundary
conditions (7.2.2) to (7.2.4), the weak formulation is given in (7.2.8):∫
Ω

κ(∇T ·∇η)+ ρcp(u ·∇T)η+ cTη dΩ+
∫
Γ3

σTη dΓ =
∫
Ω

f η dΩ+
∫
Γ2

g2η dΓ+
∫
Γ3

g3η dΓ.

(7.3.6)
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The next step is to approximate T by Tn:

Tn =
n+nb

∑
j=1

Tj ϕj(x), (7.3.7)

where nb refers to the prescribed (essential) boundary conditions, and to substitute
η = ϕi(x) for i from 1 to n. This yields the following system of equations:

n+nb

∑
j=1

Tj{
∫
Ω

κ(∇ϕj · ∇ϕi) + ρcp(u · ∇ϕj)ϕi + cϕj ϕi dΩ +
∫
Γ3

σϕjϕi dΓ} =

∫
Ω

f ϕi dΩ +
∫
Γ2

g2ϕi dΓ +
∫
Γ3

g3 ϕi dΓ, i = 1, . . . , n. (7.3.8)

In matrix-vector notation this can be written as ST = F.

Exercise 7.3.1
Give the elements of the matrix S and the right-hand side vector F.

Why do we have to use j in the summation (7.3.7) and i for the test function and not vice
versa? �

7.3.3 The convection-diffusion equation in R1 by finite elements

Once the Galerkin equations are derived, we can apply the finite element method
since the FEM is just a tool to construct basis functions. In this section we shall
limit ourselves to the 1D convection-diffusion equation:

− d

dx
κ

dT

dx
+ ρcpu

dT

dx
= f , (7.3.9)

with boundary conditions
T(0) = T0,

κ dT
dx (1) = 0.

(7.3.10)

The weak formulation corresponding to Equation (7.3.9) with boundary conditions
(7.3.10) is given by

1∫
0

(κ
dT

dx

dη

dx
+ ρcpu

dT

dx
η) dx =

1∫
0

f η dx (7.3.11)

with T(0) = T0 and η(0) = 0.

Hence the Galerkin equations corresponding to the weak formulation (7.3.11) are
given by

n

∑
j=0

Tj

1∫
0

(κ
dϕj

dx

dϕi

dx
+ ρcpu

dϕj

dx
ϕi) dx =

1∫
0

f ϕi dx, i = 1, . . . , n. (7.3.12)

In order to apply the finite element method we use the linear basis functions de-
fined in (6.2.10). Again we can introduce finite element matrices and vectors to
store the contribution for each element.
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Example 7.3.1

Let ρcp = 1 and κ and u be constant.
Then the element matrix corresponding to (7.3.12) is given by

Sek =
κ

h

[
1 −1
−1 1

]
+

u

2

[ −1 1
−1 1

]
, (7.3.13)

with h the length of the element.

For constant values of h the large matrix corresponding to (7.3.4) is given by

κ

h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

u

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(7.3.14)
Compare this result with a central finite difference scheme. (Choose end point x = 1
between two nodes of the grid).

So from (7.3.14) we may conclude that discretization of the convection term by
Galerkin finite elements results in a scheme which is very similar to central dif-
ferences. How to upwind in case of finite elements will be the subject of Section
(7.4.2).

Exercise 7.3.2 Prove Equation (7.3.11) �

Exercise 7.3.3 Prove Equation (7.3.12) �

Exercise 7.3.4 Prove Equation (7.3.13) �

Exercise 7.3.5 Prove Equation (7.3.14) �

7.3.4 The convection-diffusion equation in R2 by finite elements

Consider the convection-diffusion equation (7.2.1) with boundary conditions (7.2.2)
to (7.2.4). The weak formulation is given in (7.2.8) and the corresponding Galerkin
equations in (7.3.8). For the application of the FEM we subdivide the domain in
triangles and use the linear basis functions defined in (6.3.8). The boundary inte-
grals in (7.3.8) are approximated by line elements in exactly the same way as in
Section 6.3.4. The element vector for the internal element (triangle) is of course the
same as in Formula (6.3.17). Only the element matrix for the triangle is different
from that in Section 6.3.1.

Exercise 7.3.6
Show that the element matrix Sek for the triangle corresponding to (7.3.8) is a 3 × 3 matrix
with elements sij given by

sij =
∫
ek

κ(∇ϕj · ∇ϕi) + ρcp(u · ∇ϕj)ϕi + cϕi ϕj dΩ. (7.3.15)

�
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Exercise 7.3.7 Let κ and c be constant scalars, ρcp be equal to 1 and u be a vector with
constant components. Express the elements of the element matrix Sek in terms of Δ (6.3.11)
and the coefficients βi and γi given in (6.3.13).
Hint: use the Newton Cotes formula to approximate the integrals. �

7.4 Petrov-Galerkin

7.4.1 Introduction

In Section 7.3 we have introduced the Galerkin method. Galerkin is based on the
discretization of the weak formulation, where the solution space and the test space
are identical. This approach is very common in finite elements and it has many
advantages. However, it is not necessary that solution space and space of test
functions are the same. In the literature one can find for example a method called
collocation, where the test functions are in fact delta functions. This means that
one satisfies the differential equation point-wise in the nodal points. In that case
it is of course necessary to require more smoothness of the approximation to the
solution since integration by parts, to reduce the order of the weak formulation, is
no longer possible. For that reason this approach has never become very popular.
However, sometimes one uses test functions that do not have the same shape as the
basis functions, without affecting the continuity requirements. So starting point is
the same weak formulation as for Galerkin. Such methods are for example applied
to stabilize the numerical solution. Methods in which the test functions and the
basis functions for the solution have different shapes are called Petrov-Galerkin
methods.

A typical application in which Petrov-Galerkin methods are used, is convection
dominated flow. In finite difference methods it is necessary to use upwind schemes
to stabilize the solution, in finite elements Petrov-Galerkin plays the same role.

In the remainder of this chapter we shall use SGA for the Standard Galerkin Ap-
proach and SUPG for Petrov-Galerkin. The letters SU will be explained in Section
7.4.3.

7.4.2 Upwinding in R1 by Petrov-Galerkin

In Section 3.3.2.2 we introduced upwind differencing using the artificial model
problem:

−ε
d2c

dx2
+ u

dc

dx
= 0, (7.4.1)

with boundary conditions

c(0) = 0, c(1) = 1. (7.4.2)

Figure 3.8 shows the exact solution for ε = 0.01 and u = 1. If we use SGA as in
Section 7.3.3 we get a scheme that is almost identical to a central difference scheme
(see Exercise 7.3.3). So one may expect the same behavior as for central differences.
Figure 7.1 shows that this is indeed the case.

The central difference scheme for Equation (7.4.1) with boundary conditions
(7.4.2) is given by:

−ε
ci+1 − 2ci + ci−1

h2
+ u

ci+1 − ci−1

2h
= 0, i = 1, ..., n. (7.4.3)
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Figure 7.1: Solution of 1d convection-diffusion equation by SGA.

To avoid the unrealistic wiggles we use upwind to approximate the convective
terms. The most simple one is first order upwind, where the convection term is
discretized by a backward difference scheme for positive velocity u.
The first order upwind scheme for Equation (7.4.1) reads (u > 0)

−ε
ci+1 − 2ci + ci−1

h2
+ u

ci − ci−1

h
= 0, i = 1, ..., n. (7.4.4)

The local truncation error for Equation (7.4.4) is equal to

−uh

2

d2c

dx2
+ O(h2). (7.4.5)

Exercise 7.4.1 Prove (7.4.5) �

(7.4.5) shows that first order upwind in fact introduces an artificial diffusion of

ε + uh
2 . There are many other upwind schemes that in fact introduce an artificial

diffusion in some clever way.

This observation has inspired FEM researchers to simulate this behavior by a suit-
able choice of the test functions. To derive the weak formulation for Equation
(7.4.1) we multiply by a test function η:

1∫
0

(−ε
d2c

dx2
+ u

dc

dx
)η dx = 0. (7.4.6)

Now the trick is to split η(x) into two parts w(x) and p(x) (η(x) = w(x) + p(x)),
where w(x) is the classical test function from the same space as the solution and
p(x) is used to take care of the upwind behavior. The w(x) part ensures the con-
sistency of the scheme. This function must be so smooth that integration by parts
is allowed. p(x) on the other hand will be defined elementwise, which means that
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it may be discontinuous over the element boundaries. In this way Equation (7.4.6)
is written as

1∫
0

(ε
dc

dx

dw

dx
+ u

dc

dx
w) dx +

1∫
0

(−ε
d2c

dx2
+ u

dc

dx
)p dx = 0. (7.4.7)

The last integral is replaced by the sum over the elements, so in fact contributions
over the element boundaries are neglected. Hence

1∫
0

(ε
dc

dx

dw

dx
+ u

dc

dx
w) dx + ∑

elements

∫
element

(−ε
d2c

dx2
+ u

dc

dx
)p dx = 0. (7.4.8)

Note that the last term is just a correction to the standard SGA equations. This
correction goes to zero if c approaches the exact solution. Of course the choice of p
is essential for the behavior of the scheme. Since we are dealing with linear basis

functions, the term ε d2c
dx2 is zero per element. So the extra term reduces to

∑
elements

∫
element

(u
dc

dx
)p dx. (7.4.9)

Now we choose p(x) such that we get an artificial diffusion of the size uh
2 .

Exercise 7.4.2
Show that if we choose p(x) = h

2
dϕi
dx per element, the artificial diffusion is equal to uh

2 .

Hint compare Expression (7.4.9) with the discretization of the diffusion term. �

In practice one chooses p(x) = hξ
2

dϕi
dx , with ξ some parameter depending on the

ratio of u and ε.

ξ equal to sign(u) corresponds to the classical upwind scheme. Popular choices for
ξ can be found for example in Brooks and Hughes [6].

7.4.3 SUPG: stream line upwinding in R2 by Petrov-Galerkin

To extend the upwind Petrov-Galerkin method to 2D one might consider to use
the same approach as in Section (7.4.2). An alternative is to apply the upwind tech-
nique of Section (7.4.2) to both coordinate directions. However, both approaches
have the disadvantage that we have a diffusion term in all directions. The wig-
gles we get are due to convection, so it makes sense to apply upwind only in the
direction of the flow. So a natural choice for upwind in more dimensions is to
apply the one-dimensional upwind in the velocity direction. Brooks and Hughes

[6] achieved this by replacing the term p(x) = hξ
2

dϕi
dx by p(x) = hξ

2
∇ϕi·u
||u|| . This

means that the x-derivative of the basis function in the one-dimensional problem
is replaced by the directional derivative of the basis function in the direction of the
velocity. For h one takes some representative distance in the element, preferably
in the direction of u. Since streamlines are always in the direction of the velocity
this method is commonly called the Streamline Upwind Petrov Galerkin method
(SUPG).

To show the difference between SGA and SUPG we consider the following bench-
mark problem.

Rotating cone problem
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Figure 7.2: Definition region for rotating cone problem.

Consider the region Ω sketched in Figure 7.2.

The region consists of a square with a cut B. In the inner region we suppose that
the concentration satisfies the convection-diffusion equation

−ε�c + u · ∇c = 0 , (7.4.10)

where ε is chosen equal to 10−6 and the velocity u is such that the flow rotates

counter clockwise. This is achieved by setting u =

[ −y
x

]
. At the outer boundary

we use the boundary condition

c|Γ = 0 . (7.4.11)

On the starting curve B the concentration c is set equal to

c|B = cos(2π(y +
1

4
)) , (7.4.12)

and due to the small diffusion one expects that the concentration at the end curve is
nearly the same. The end curve has the same co-ordinates as B but the nodal points
differ, which means that the solution may be different from the starting one. Since
no boundary condition is given at the outflow curve ”B” implicitly the boundary
condition

ε
∂c

∂n
|B = 0 , (7.4.13)

is prescribed. (Why?)

If we make contour lines (i.e. lines with equal values) of the concentration, we
expect concentric circles. However, if we subdivide the region into 20 × 20 squares,
each of which is subdivided into two triangles by drawing the diagonal in arbitrary
direction we get a very irregular set of contour lines as can be seen in Figure 7.3.

If we solve the same problem with SUPG the result is much smoother as is shown
in Figure 7.4. The fact that circles in this picture are not completely closed is due
to the numerical diffusion.

7.5 An example of a system of coupled PDEs

We finish this chapter with the plane stress example of Section 5.4.3. This problem
can be formulated in terms of a minimization problem, see Equation (5.4.5), but in
this case we shall use the weak formulation.



7. The weak formulation and Galerkin’s method 139

Figure 7.3: Equi-concentration lines for rotating cone problem computed by SGA.

Figure 7.4: Equi-concentration lines for rotating cone problem computed by SUPG.

In Exercise 5.7.3 we have derived that the displacements (u, v) satisfy the equation

−∂σxx

∂x
− ∂τxy

∂y
= 0 , (7.5.1)

−∂τxy

∂x
− ∂σyy

∂y
= 0 .

Exercise 7.5.1
Show with the information of Section 5.4.3 that the boundary conditions for Equation
(7.5.1) are given by:

u = v = 0 on Γ1

σxxnx + τxyny = t1, τxynx + σyyny = t2 on Γ2

σxxnx + τxyny = 0, τxynx + σyyny = 0 on all other boundaries,

with (nx, ny) the normal on the boundary. �

To derive the weak formulation we multiply the first equation of 7.5.1 by a test
function δu and the second equation by δv and integrate over the domain Ω.

Exercise 7.5.2 Show using the divergence theorem, that the weak formulation correspond-
ing to Equation (7.5.1) with the boundary conditions given in Exercise 7.5.1 can be written
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as: ∫
Ω

{σxx
∂δu

∂x
+ τxy

∂δu

∂y
} dΩ =

∫
Γ2

t1δu dΓ, (7.5.2)

∫
Ω

{τxy
∂δv

∂x
+ σyy

∂δv

∂y
} dΩ =

∫
Γ2

t2δv dΓ.

�

The next step is to apply the Galerkin method. We approximate u and v by a linear
combination of basis functions

un =
n

∑
j=1

uj ϕj(x), vn =
n

∑
j=1

vj ϕj(x).

The same basis functions for u and v are used. δu is replaced by ϕi(x) for i in Σ1,
the set of non-prescribed u-velocity components and δv by ϕi(x) for i in Σ2, the set
of non-prescribed v-velocity components.

In this particular example Σ1 and Σ2 are identical.

Exercise 7.5.3 Show that the system of Galerkin equations corresponding to the weak for-
mulation (7.5.2) is given by

n

∑
j=1

uj

∫
Ω

{A
∂ϕj

∂x

∂ϕi

∂x
+ B

∂ϕj

∂y

∂ϕi

∂y
} dΩ +

n

∑
j=1

vj

∫
Ω

{νA
∂ϕj

∂y

∂ϕi

∂x
+ B

∂ϕj

∂x

∂ϕi

∂y
} dΩ

=
∫
Γ2

t1 ϕi dΓ, i ∈ Σ1 (7.5.3)

n

∑
j=1

uj

∫
Ω

{B
∂ϕj

∂y

∂ϕi

∂x
+ νA

∂ϕj

∂x

∂ϕi

∂y
} dΩ +

n

∑
j=1

vj

∫
Ω

{B
∂ϕj

∂x

∂ϕi

∂x
+ A

∂ϕj

∂y

∂ϕi

∂y
} dΩ

=
∫
Γ2

t2 ϕi dΓ, i ∈ Σ2

�

To apply the FEM, the region Ω is subdivided into triangular elements. The same
linear basis functions as in Section 6.3.4 are used. In each point there are two un-
knowns so the size of the element matrix must be 6 × 6 and the element vector has
6 entries.

Suppose we order the triangle unknowns u1, u2, u3, v1, v2, v3 with 1, 2 and 3 the
local node numbers of the triangle. The rows of the element matrix are of course
ordered in the same way. Then the element matrix can be split into 4 submatrices:

Sek =

[
S

ek
uu S

ek
uv

S
ek
vu S

ek
vv

]
. (7.5.4)

Exercise 7.5.4 Compute the elements of the four subelement matrices under the condition
that ν and E are constant. �
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7.6 Mathematical theory

Existence and uniqueness of solutions of the weak formulation are in general much
more difficult to prove than in case of a minimization problem. However, for a
subclass of problems, it is possible to give some general theory.

Consider a linear PDE of order 2m of the form

Lu = f. (7.6.1)

The weak formulation can be written as a bilinear form:

a(u, v) = ( f , v), (7.6.2)

where a(u, v) contains only derivatives of order m. This means that we have re-
moved all higher order derivatives by integration by parts. The solution must
be found in some Hilbert space (more precisely a Sobolev space Hm) and the test
functions are arbitrary functions in that space. Now we can prove the following
theorem

Theorem 7.6.1 Let V0 be a real Hilbert space with inner product (., .)0. Let V1 be a closed
subspace of V0 with inner product (., .)1. Let a(u, v) be a positive continuous bilinear form
mapping V1 × V1 → R, which means

a(u, v + w) = a(u, v) + a(u, w), (7.6.3)

a(u + w, v) = a(u, v) + a(w, v), (7.6.4)

a(λu, v) = a(u, λv) = λa(u, v), (7.6.5)

|a(u, v)| ≤ K‖u‖1‖v‖1, (7.6.6)

a(u, u) ≥ γ1‖u‖2
1, (7.6.7)

‖u‖1 ≥ γ0‖u‖0 (7.6.8)

(7.6.3) to (7.6.5) imply linearity, (7.6.6) is continuity and (7.6.7) means positiveness.
Let f be an element of V0. Then the weak formulation

find u ∈ V1 such that a(u, v) = ( f , v)0 ∀v ∈ V1, (7.6.9)

has exactly one solution in V1.

Proof
The Lax-Milgram theorem (see for example [49], page 92) states that, under con-
ditions (7.6.3) to (7.6.7), for each linear functional F(v) on V1 there is precisely one
element w ∈ V1 such that

a(w, v) = F(v), ∀v ∈ V1. (7.6.10)

According to (7.6.8) for a given f ∈ V0 the inner product ( f , v)0 is a bounded linear
functional on V1, since

( f , v)0 ≤ ‖ f‖0‖v‖0 ≤ 1

γ0
‖ f‖0‖v‖1. (7.6.11)

This proves the theorem. �

Remark: if we compare (7.6.3) to (7.6.7) with (5.9.5) to (5.9.7), then we see that the
main difference is the symmetry requirement. This is necessary for the minimiza-
tion problem, but not for the existence of the solution of the weak formulation.

(7.6.6), (7.6.7) are necessary to guarantee that a(u, u)
1
2 is an equivalent norm of
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‖.‖1. In (5.9.5) to (5.9.7) a(., .) created itself V1, and hence a(u, u)
1
2 was the norm on

V1. In that case(7.6.6), (7.6.7) are satisfied automatically.

In fact now we require that the symmetrical part of a(., .) is positive definite.

The next theorem gives an error estimate in terms of the ”1”-norm, for our finite
dimensional approximation.

Theorem 7.6.2 Let V0, V1 and a(., .) be defined as in Theorem 7.6.1. Let V1h be a finite
dimensional subspace of V1. Let u be the solution of the weak problem

a(u, v) = ( f , v)0 ∀v ∈ V1, (7.6.12)

and let uh be the solution of the finite dimensional problem

a(uh, vh) = ( f , vh)0 ∀vh ∈ V1h. (7.6.13)

Then we have the following estimate:

‖u − uh‖1 ≤ K

γ1
min

vh∈V1h

‖u − vh‖1. (7.6.14)

Proof
Since V1h is a subspace of V1

a(u, vh) = ( f , vh)0 ∀vh ∈ V1h, (7.6.15)

and from (7.6.13)
a(u − uh, vh) = 0 ∀vh ∈ V1h, (7.6.16)

From (7.6.7) and (7.6.16) it follows that

γ1‖u − uh‖2 ≤ a(u − uh, u − uh) = a(u − uh, u). (7.6.17)

Because of (7.6.16) we get

γ1‖u − uh‖2 ≤ a(u − uh, u − vh) ∀vh ∈ V1h, (7.6.18)

and due to the continuity of a (7.6.6)

γ1‖u − uh‖2 ≤ K‖u − uh‖‖u − vh‖ ∀vh ∈ V1h. (7.6.19)

So

‖u − uh‖ ≤ K

γ1
‖u − vh‖ ∀vh ∈ V1h. (7.6.20)

which proves the theorem. �

Theorem 7.6.2 shows that the error in the solution in energy norm is smaller than
a constant times the interpolation error in energy norm. So the error estimate is of
the same type as for minimization problems, although the constant is in general
larger than 1. So the estimate is not as sharp as it is for a minimization problem.

7.7 Summary of Chapter 7

Instead of deriving a minimization problem corresponding to a PDE, one may also
derive a weak formulation by multiplying the PDE by a test function. Integration
by parts may be used to get rid of higher order derivatives. Natural boundary
conditions are automatically part of the weak formulation due to this integration
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by parts. This method can be applied to general PDEs and is therefore much more
applicable than the minimization approach.

To approximate the solution, Galerkin’s method is applied, which is a direct gen-
eralization of the Ritz method. The solution is approximated by a finite set of basis
functions and the test function runs through the same set. Application of the FEM
to Galerkin is completely identical to the use of FEM in case of Ritz.

By using test functions that are different from the basis functions one gets the
Petrov-Galerkin method. A typical application is SUPG, the finite element equiva-
lent of upwind differencing.





Chapter 8

Extension of the FEM

Objectives

In the previous Chapters 6 and 7 we have introduced the FEM as a technique to
construct basis functions for Ritz and Galerkin. Until now we have limited our-
selves to linear interpolation polynomials in R1 and R2. In R2 this means auto-
matically that we have to use triangles.

In this chapter we shall extend the theory to higher order polynomials. Further-
more we shall show how quadrilaterals can be handled. In each case we have to
check whether these elements satisfy the continuity requirements formulated in
Chapter 6. This will lead to the isoparametric transformations. Finally we shall show
that these requirements, in the case of fourth order PDEs, lead to complicated el-
ements. In practice this is solved by reducing the fourth order problem as a set
of two second order problems. In this way the continuity requirements may be
reduced.

8.1 (Straight) quadratic triangles

One may expect that the linear interpolations we have used so far, lead to errors of
the order h2, provided the solution is smooth enough. If we want a higher order ac-
curacy, it is necessary to use higher order polynomials. In this section we shall de-
rive the basis functions corresponding to quadratic interpolation. Elements using
quadratic interpolation polynomials are usually addressed as quadratic elements.

In R
1 the situation is simple. A quadratic interpolation polynomial over an el-

ement with vertices x1and x3 and midpoint x2 can be written as (compare with
(6.2.4) - (6.2.5))

u(x) = l1(x)u1 + l2(x)u2 + l3(x)u3, (8.1.1)

with li(x) the quadratic Lagrangian polynomials defined by

l1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
, (8.1.2a)

l2(x) =
(x − x3)(x − x1)

(x2 − x3)(x2 − x1)
, (8.1.2b)

l3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2).
(8.1.2c)
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Again these polynomials satisfy

lj(xi) = δij. (8.1.3)

So the basis functions ϕi(x) can be defined by

ϕi(x) quadratic,

ϕi(xj) = δij, i, j,= 1, 2, · · · , n + 1 . (8.1.4)

Figure 8.1 shows a ”vertex” basis function and Figure 8.2 a basis function corre-
sponding to the mid point of an element.

Figure 8.1: Basis function for a vertex. Figure 8.2: Midpoint basis function.

Theorem 8.1.1 The Newton Cotes integration rule for the quadratic elements in R1 is
given by ∫

e

f (x) dx =
h

6
[ f (x1) + 4 f (x2) + f (x3)], (8.1.5)

with h the length of the interval [x1, x3] and x2 the mid point. This is of course Simpson’s
rule.

Exercise 8.1.1 Prove Theorem (8.1.1). �

Exercise 8.1.2 Compute the element matrix and element vector for Poisson’s equation
(6.2.1) using quadratic polynomials. Use the Newton Cotes rule (8.1.5) to compute the
integrals. �

The extension to R2 is more complex. First we shall limit ourselves to quadratic
triangles with straight sides. The extension to curved sides is treated in Section
(8.4).

A quadratic polynomial in R2 is uniquely defined by 6 parameters (why?). In
Chapter 6 we have seen that for second order PDEs, it is necessary that the basis
functions are continuous. In order to get continuity, it is necessary that the val-
ues of the interpolation on the common edge of two adjacent triangles are equal
for both triangles. An edge is one dimensional. A quadratic polynomial in R1 is
uniquely defined by 3 parameters, hence we need three nodal points on each edge
of the triangle. So it is natural to use vertices and the midside points as nodes of
the triangle. See Figure 8.3.

The 6 basis functions on the triangle are implicitly defined by the requirements
(8.1.4). If we write the quadratic polynomial ϕi(x) as

ϕi(x) = αi + βix + γiy + δix
2 + εixy + ηiy

2, (8.1.6)

the coefficients αi, . . . ηi can be computed by solving a 6 × 6 system of linear equa-
tions. To do this element by element is relatively expensive. A more subtle ap-
proach is to express the basis functions ϕi(x) in terms of the linear basis functions
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1 2 3

4

5

6

Figure 8.3: Nodes of quadratic trian-
gle.

1 12 2

2313

3

Figure 8.4: Special numbering of
nodes.

λi(x) (6.3.22) corresponding to the vertices of the triangle. In this particular case it
is easier to use the local numbering of Figure 8.4 to define the basis functions. The
basis functions corresponding to the vertices are denoted by ψi(x) and the basis
functions corresponding to the midpoints by ψij(x). The relation between ϕi and
ψi is trivial.

First we consider the basis functions ψi(x) corresponding to the vertices.

Since ψi(xj) = δij an obvious choice is to define ψi = λivi with vi a linear function.
(Why?).
This function satisfies 3 of the six equations automatically.
From ψi(xi) = 1 it follows that vi(xi) = 1.
From ψi(xkl) = 0 it follows that vi(xkl) = 0 for k = i or l = i.
Because the points xij are in the middle of the sides this implies that
vi(xj) = −1 and vi(xk) = −1.
So vi can be written as λi − λj − λk = 2λi − 1 (Theorem 6.3.3) i �= j, i �= k, j �= k.

Next consider the mid points xij.

Since ψij(xk) = 0, ψij(xkl) = 0 if ij �= kl we have ψij = 0 on the sides not containing
point ij. So a natural choice is ψij = αλiλj. From ψij(xij) = 1 it follows that α = 4.

In conclusion in each element the quadratic basis functions can be expressed in the
linear basis functions by

ψi = λi(2λi − 1),

ψij = 4λiλj. (8.1.7)

Theorem 8.1.2 The Newton Cotes formula for the quadratic triangle is given by∫
e

Int(x) dΩ =
|Δ|
6

[Int(x12) + Int(x23) + Int(x13)]. (8.1.8)

Exercise 8.1.3 Prove Theorem (8.1.2). �

Exercise 8.1.4 Compute the element matrix and vector corresponding to the Poisson equa-
tion (6.3.1) for a quadratic triangle. Use the Newton Cotes rule (8.1.8). �

8.2 Linear triangles revisited

In Section 6.3.2 we have introduced linear triangles and computed the basis func-
tions by direct solution of the system of equations (6.3.10). An alternative approach
is to map the triangle in (x, y)-space on a so-called standard triangle in (ξ, η)-space,
with coordinates (0,0), (1,0) and (0,1). Although there is no need to do so for the
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Figure 8.5: General triangle Standard triangle

linear triangle, we shall follow this approach here, since mapping is necessary for
a number of elements that will be treated later on.
Consider the standard and general triangle in Figure 8.5. The basis functions on
the standard triangle must satisfy φi(ξ j, ηj) = δij and one immediately verifies that
they are given by

φ1(ξ, η) = 1 − ξ − η,

φ2(ξ, η) = ξ,

φ3(ξ, η) = η. (8.2.1)

The linear transformation from the general triangle to the standard triangle is
given by

x1 → (0, 0), x2 → (1, 0), x3 → (0, 1), (8.2.2)

hence

x = x1 + (x2 − x1)ξ + (x3 − x1)η,

y = y1 + (y2 − y1)ξ + (y3 − y1)η. (8.2.3)

In order that the transformation is applicable it must be invertible. So the Jacobian
of the transformation must be non-singular for each x in the triangle.

The Jacobian matrix J is defined by

J =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
. (8.2.4)

Theorem 8.2.1 The determinant of J is equal to:

det(J) = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1), (8.2.5)

and this is precisely the parameter Δ in (6.3.11).
Integration of some function f (x, y) over the general triangle can be simplified by
transformation to the standard triangle:∫

exy

f (x, y) dΩxy =
∫

eξη

f (ξ, η)|det(J)| dΩξη. (8.2.6)

Exercise 8.2.1 Prove that |Δ| is twice the area of the original triangle.
Hint: use (8.2.6) with f = 1. �
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Since |Δ| is only zero if the triangle has area zero, the transformation can not be
singular.
To show how this transformation can be utilized to compute an element matrix or
vector, we consider the simple example of the Poisson equation (6.2.1).

The element matrix has elements sij =
∫
e
∇ϕi(x) · ∇ϕj(x) dΩ. We transform this

integral to an integral in the (ξ, η)-plane. Hence:

sij =
∫

exy

∇ϕi(x) · ∇ϕj(x) dxdy =
∫

eξη

∇ϕi · ∇ϕj|det(J)|dξ dη. (8.2.7)

Since |det(J)| is constant the integral reduces to

sij = |det(J)|
∫
e

(∇ϕi · ∇ϕj)dξ dη. (8.2.8)

To compute the values of ∇ϕi we express the derivatives to x and y into derivatives
of ξ and η:

∂ϕk

∂x
=

∂ϕk

∂ξ

∂ξ

∂x
+

∂ϕk

∂η

∂η

∂x
,

∂ϕk

∂y
=

∂ϕk

∂ξ

∂ξ

∂y
+

∂ϕk

∂η

∂η

∂y
. (8.2.9)

To compute these derivatives, we need the values of ∂ξ
∂x and so on.

Theorem 8.2.2 The matrix [
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
, (8.2.10)

is the inverse of the matrix [
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
. (8.2.11)

Exercise 8.2.2 Prove Theorem (8.2.2). �

Exercise 8.2.3 Show that[
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
=

1

det(J)

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
(8.2.12)

�

Exercise 8.2.4 Show from these formulas that

∇φi =

[
βi

γi

]
, (8.2.13)

as defined in (6.3.13). �

Exercise 8.2.5 Show that sij in (8.2.8) is given by sij =
|Δ|
2 (βiβ j + γiγj). �

Exercise 8.2.6 Show that
∫

eξη

φi(ξ, η)dξdη = 1
6 for i = 1, 2, 3.

Use this result and (8.2.6) to derive the Newton Cotes formula (6.3.26). �

Since the jacobian as well as the derivatives for the linear basis functions are con-
stant a lot of this work is superfluous. However, in the next sections we shall use
this approach for more complex elements.
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8.3 Quadrilaterals

Until now the derivation of the basis functions for triangles was relatively simple.
Once we use quadrilaterals, however, things become more complicated. Due to
the continuity requirement, it is not trivial what the basis functions look like.

Let us first start with the simple case of a rectangle with all sides in the coordi-
nate directions. Such a rectangle may be considered as the product of two one-
dimensional elements in x and y-direction respectively. The most simple element
is the one with the 4 vertices as nodes and a bilinear approximation.

Theorem 8.3.1 Consider the rectangle (x1, x2) × (y1, y2) and local node numbers 1 to
4, (Figure 8.6).

1 2

34

1 2

1

2

x x

y

y

Figure 8.6: Nodes of rectangle.

The four basis functions are defined by:

ϕ1(x, y) = λ1(x)λ1(y),

ϕ2(x, y) = λ2(x)λ1(y),

ϕ3(x, y) = λ2(x)λ2(y),

ϕ4(x, y) = λ1(x)λ2(y), (8.3.1)

with λi(x) the one-dimensional basis functions in x-direction and λj(y) in y-direction.

Exercise 8.3.1 Prove Theorem (8.3.1).
Why are these basis functions continuous across element boundaries? �

One easily verifies that the basis functions ϕi(x, y) in (8.3.1) have the shape

ϕi(x, y) = αi + βix + γiy + δixy. (8.3.2)

Unfortunately basis functions of the shape (8.3.2) are not continuous for a gen-
eral quadrilateral (Why?). Since it is not clear what the general shape of the basis
functions must be, we have to use some special construction method.

The standard technique used in the literature is known under the name isopara-
metric transformations. The idea is as follows: one does not know what the basis
functions look like for a general quadrilateral but for a square with sides in x and
y-direction it is obvious. Therefore one transforms the general quadrilateral el-
ement in the x-y-plane with a coordinate transformation (x, y) → (ξ, η) to a
standard element (the unit square) in the ξ-η-plane. Such a transformation is called
isoparametric if it satisfies the following properties:
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1. The nodes x1, x2, ..., xk are transformed to fixed points ξ1, ξ2, ..., ξk, i.e. the
points in the reference element are always the same.

2. Straight sides in the original element remain straight in the reference element.

3. If the basis functions in the transformed element are given by ϕ1(x), ϕ2(x),
... , ϕk(x) then the inverse transformation (ξ, η) → (x, y) is given by

x =
k

∑
l=1

xl ϕl(ξ, η), (8.3.3)

and the interpolation by

u(x) =
k

∑
l=1

ul ϕl(ξ, η). (8.3.4)

In other words we use the same elements for transformation and interpolation.

Note that the basis functions are only known explicitly in the reference element, to
compute their values in the original element we have to do a back-transformation.
In fact also only the back-transformation is given explicitly.

Figure 8.7 shows the transformation of the quadrilateral element to a unit square
in (ξ, η) space.

x

y
x

x

x

x

ξ

η
ξ ξ

ξξ

1

2

3

4

21

34

Figure 8.7: Transformation of quadrilateral to unit square.

In this case the isoparametric transformation is a bilinear transformation. The nodes
xi of the quadrilateral are transformed to the vertices of the unit square in the
following way:

x1 → (0, 0), x2 → (1, 0), x3 → (1, 1), x4 → (0, 1). (8.3.5)

The basis functions in the (ξ, η)-plane are bi-linear and defined by

ϕ1 = (1 − ξ)(1 − η), ϕ2 = ξ(1 − η), ϕ3 = ξη, ϕ4 = (1 − ξ)η. (8.3.6)

Note that the transformation (8.3.3) transforms straight sides of the reference ele-
ment into straight sides of the quadrilateral in (x, y)-space. Moreover the function
u(x) defined by (8.3.4) reduces to a straight line on the sides of the quadrilateral
(Why?). Hence continuity of the interpolation is satisfied.

In order that the transformation is applicable it must be invertible, in other words
for each x in the quadrilateral we must have a unique ξ. So the Jacobian of the
transformation must be non-singular for each x in the quadrilateral.
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Theorem 8.3.2 The transformation (8.3.3) is given by

x = x1 + (x2 − x1)ξ + (x4 − x1)η + (x1 − x2 + x3 − x4)ξη,

y = y1 + (y2 − y1)ξ + (y4 − y1)η + (y1 − y2 + y3 − y4)ξη. (8.3.7)

Theorem 8.3.3 The determinant of J is equal to:

det(J) = (x2 − x1 + Axη)(y4 − y1 + Ayξ)− (x4 − x1 + Axξ)(y2 − y1 + Ayη),
(8.3.8)

with Ax = x1 − x2 + x3 − x4 and Ay = y1 − y2 + y3 − y4.

Exercise 8.3.2 Prove Theorem (8.3.2). �

Exercise 8.3.3 Prove Theorem (8.3.3). �

Theorem 8.3.4 The transformation (8.3.4) is invertible if and only if all angles of the
quadrilateral are less than π, i.e. the quadrilateral is convex.

Proof

Since the terms of second degree cancel, det(J) is linear. In other words if the sign
of det(J) is the same at each vertex, it is impossible that it is zero inside the element
(Why?).

The value of the det(J) in point (0,0) is equal to (x2 − x1)(y4 − y1)− (x4 − x1)(y2 −
y1) which is equal to the outer product (x2 − x1)× (x4 − x1).

Since v1 × v2 = ||v1|| ||v2||sin ϕ, with ϕ the angle between the two vectors. This
is positive if the angle ϕ (counter-clockwise) is less than π. So in point 1 we must
have an angle less than π.

The same holds for all other points and corresponding angles.

In conclusion for a convex quadrilateral the transformation is regular, if one of the
angles is larger than π the transformation is singular.

To show how this transformation can be utilized to compute an element matrix or
vector, we consider the simple example of the Poisson equation (6.2.1).

The element matrix has elements sij =
∫
e
∇ϕi(x) · ∇ϕj(x) dΩ. Since the basis func-

tions are only known in the reference element we have to transform this integral
to an integral in the (ξ, η)-plane as given in (8.2.7). In general it is complicated to
compute the integral (8.2.7) exactly so one uses a numerical integration rule.

Theorem 8.3.5 The Newton Cotes rule corresponding to the reference element 8.3.5 is
given by the two-dimensional equivalent of the Trapezoid rule:

1∫
0

1∫
0

Int(ξ, η) dξdη =
1

4

4

∑
k=1

Int(ξk, ηk). (8.3.9)

Exercise 8.3.4 Prove Theorem (8.3.5). �

Approximation of Equation (8.2.7) by the Newton Cotes rule (8.3.9) leads to

sij ≈ 1

4

4

∑
k=1

(∇ϕi · ∇ϕj|det(J)|)(ξk, ηk). (8.3.10)
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The values of |det(J)| in the integration points in the reference element can be com-
puted immediately from Equation (8.3.8). To compute the values of ∇ϕi we have
to express the derivatives to x and y into derivatives of ξ and η, since ϕi is only
known in the (ξ, η)-plane, see (8.2.9).

Exercise 8.3.5 Compute the values of ∂ξ
∂x in the integration points. �

So the easiest way to approximate the Integrals (8.2.7) in the element matrix is to
create a number of tables and combine these tables into the Sum (8.3.9).

In FEM programs the standard sequence to do it is the following:

1. Make a table of the values of ξ and η in the integration points. In this case
this table is very simple, but if one uses Gauss integration the numbers are
less trivial.

2. Make a table of the weights of the numerical integration. The weights include

the factor |det(J)|, hence in this particular case we have wk =
1
4 |det(J(xk))|.

3. Make a table of ∂x
∂ξ and so on in the integration points.

4. Use this table also to create ∇ϕi.

Note that only the results of steps 2 and 4 are needed to compute the integrals
(8.2.7).

The original weights of the numerical integration ( 1
4 ) are dimensionless, but due

to the multiplication by |det(J)|, the weights get the dimension of an area.

Exercise 8.3.6 Compute the element vector corresponding Poisson’s equation (6.3.1), in
the case of arbitrary quadrilateral. Use Newton Cotes integration. �

8.4 Curved quadratic triangles

In Section 8.1 we have shown how basis functions for a straight quadratic triangle
can be expressed in terms of linear basis functions. When the boundary of the
domain is curved, it is necessary to approximate the boundary of the region by
a piecewise quadratic polynomial in order to get the same order of accuracy one
expects by using quadratic elements (See Section 8.7). So in practice we may have
quadratic elements with a curved boundary.

The derivation of the basis functions for these elements is very similar to that of
quadrilaterals. It is hard to find the general expression for the basis functions on
the curved triangle and therefore we use an isoparametric transformation to map
the curved triangle on a reference triangle with straight sides and vertices (0,0),
(1,0) and (0,1). See Figure 8.8.

Let ϕi(x) be the basis functions corresponding to the straight triangle (see For-
mula (8.1.7), with λ1 = 1 − ξ − η, λ2 = ξ and λ3 = η). The isoparametric transfor-
mation is defined by

x =
6

∑
k=1

xkϕk(ξ, η). (8.4.1)

Due to this transformation the boundaries of the triangle will be polynomials of
degree two at most.
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Figure 8.8: Transformation of curved triangle to reference element.

The transformation is non-singular if the determinant of the Jacobian has the same
sign on the whole triangle. Unfortunately it is not easy to give a general rule about
the restrictions an element has to satisfy in order that the transformation is reg-
ular. In general, angles of the triangle should not be too large (< 135◦) and the
”mid”points of the sides must be close to the actual middle of the edge. Further-
more the triangle may not be too curved. Usually it suffices to check the deter-
minant in the integration points. If the sign of the determinant is the same in all
integration points, one assumes that the mapping is invertible.

From Equation (8.4.1) it follows that

∂x

∂ξ
=

6

∑
k=1

xk
∂

∂ξ
ϕk(ξ, η) ,

∂x

∂η
=

6

∑
k=1

xk
∂

∂η
ϕk(ξ, η) . (8.4.2)

Exercise 8.4.1 Show that the Newton Cotes integration rule for the quadratic reference
element is given by

∫
e

Int(ξ, η) dξ dη =
1

6
(Int(

1

2
, 0) + Int(

1

2
,

1

2
) + Int(0,

1

2
)). (8.4.3)

�

Exercise 8.4.2 Compute the (ξ, η) derivatives of the basis functions in the Newton Cotes
integration points of the reference element. �

Exercise 8.4.3 Show how the Jacobian matrix can be computed in the Newton Cotes inte-
gration points. �

Exercise 8.4.4 Indicate how the weights for the Newton Cotes integration in the original
curved element can be computed. �

Exercise 8.4.5 Show how the x and y derivatives of the basis functions in the Newton
Cotes integration points can be computed. �

8.5 Application to the Stokes equations

The Stokes equations are derived from the Navier-Stokes equations (2.4.4a,2.4.4b)
by removing the convective terms. These equations are only valid in case of small
velocities. If the viscosity is a constant, the Stokes equations for incompressible
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flow may be formulated as:

−μΔu +
∂p

∂x
= fx,

−μΔv +
∂p

∂y
= fy,

∂u

∂x
+

∂v

∂y
= 0. (8.5.1)

u =

[
u
v

]
is the velocity vector and p the pressure. In order to have a unique

solution it is necessary to give boundary conditions for each velocity component
on the complete boundary. One can prove that no explicit boundary condition for
the pressure is required.

As an example we consider flow in straight channel, see Figure (8.9).

Figure 8.9: Straight channel with boundaries.

Boundary conditions are a given velocity vector on the inflow boundary Γ4, no-
slip boundary conditions on Γ1 and Γ3 and outflow boundary conditions on Γ2. The
mathematical formulation of the boundary conditions reads

u = 0, v = 0 on Γ1,

p − μ ∂u
∂n = 0, v = 0 on Γ2,

u = 0, v = 0 on Γ3,
u = u(y), v = 0 on Γ4.

(8.5.2)

For reasons that go beyond the scope of this book, the polynomials to approximate
the pressure are in general one degree lower than those of the velocity components.
Both velocity components are approximated in the same way. In order to derive
the weak formulation we multiply the first equation in (8.5.1) by a test function
δu, the second one by δv and the last one by δp. These test functions belong to the
same spaces as u, v and p respectively.

Exercise 8.5.1 Show that the weak formulation of (8.5.1) with boundary conditions (8.5.2)
can be written as ∫

Ω

μ∇u · ∇δu dΩ −
∫
Ω

p
∂δu

∂x
dΩ =

∫
Ω

fxδu dΩ,

∫
Ω

μ∇v · ∇δv dΩ −
∫
Ω

p
∂δv

∂y
dΩ =

∫
Ω

fyδv dΩ,

∫
Ω

(
∂u

∂x
+

∂v

∂y
)δp dΩ = 0. (8.5.3)

What are the boundary conditions for δu, δv and δp? �
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Exercise 8.5.2 Give the continuity requirements for u v, δu and δv.

Are there any restrictions for p and δp? �

One of the most simple elements found in the literature for the (Navier-)Stokes
equations for incompressible flow is the bi-linear velocity, constant pressure quadri-
lateral. The velocity components are approximated by bi-linear polynomials in the
way described in Section (8.3). The pressure is approximated by a constant per
element.

Exercise 8.5.3 Show that the Galerkin equations corresponding to the weak formulation
(8.5.3) are given by

n

∑
j=1

uj

∫
Ω

μ∇ϕj · ∇ϕi dΩ −
m

∑
j=1

pj

∫
Ω

ψj
∂ϕi

∂x
dΩ =

∫
Ω

fx ϕi dΩ (i = 1, ..., nu),

n

∑
j=1

vj

∫
Ω

μ∇ϕj · ∇ϕi dΩ −
m

∑
j=1

pj

∫
Ω

ψj
∂ϕi

∂y
dΩ =

∫
Ω

fy ϕi dΩ (i = 1, ..., nv),

n

∑
j=1

uj

∫
Ω

∂ϕj

∂x
ψi dΩ +

n

∑
j=1

vj

∫
Ω

∂ϕj

∂y
ψi dΩ = 0 (i = 1, ..., m). (8.5.4)

Here n is the number of u or v velocity unknowns and m the number of pressure unknowns.
nu is the number of non-prescribed u velocity unknowns and nv is the number of non-
prescribed v velocity unknowns. �

Exercise 8.5.4 What is the number of u-velocity unknowns per element? And the number
of p unknowns?

Give an expression for the pressure basis functions ψi per element. �

Exercise 8.5.5 Suppose we order the unknowns per element in the sequence u1, u2, ... ,v1,
v2, ... , p1, ...
Then the element matrix can be split into 9 parts according to:

Sek =

⎡⎣ Suu Suv Sup

Svu Svv Svp

Spu Spv Spp

⎤⎦ (8.5.5)

Give the sizes of the subelement matrices.
Give the formulas of the elements of each subelement matrix in integral form. �

8.6 Circle symmetry

Most real world problems are three-dimensional. But solving 3D problems is la-
borious and time-consuming and on top of that post-processing, like graphically
representing results is much more difficult for 3D- than for 2D-problems. There-
fore one often tries to reduce a problem from three to two dimensions by assuming
certain symmetries in the solution. One such possibility is the assumption that a
solution does not depend on a certain coordinate. (Translation symmetry). An-
other possibility is, if a region is cylindrically shaped, to assume that the solu-
tion has circular symmetry. For that to be possible all data, including boundary
conditions, must have circular symmetry. In that case it is possible to reduce the
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three-dimensional problem to a two-dimensional one by introducing cylinder co-
ordinates (r, θ, z), defined by

x = rcos θ,

y = rsin θ,

z = z. (8.6.1)

In finite difference methods, the standard approach is to transform the PDE in
(x, y, z) to a PDE in (r, z).

Exercise 8.6.1 Show that Poisson’s equation −Δu = f in cylinder coordinates (r, z) can
be written as:

∂2u

∂r2
+

∂2u

∂z2
+

1

r

∂u

∂r
= f . (8.6.2)

Suppose that r = 0 is part of the region. What is the boundary condition in r = 0? Why
do we need a boundary condition in r = 0? �

Of course in FEM it is also possible to solve the transformed Poisson equation
(8.6.2) with boundary condition as defined in Exercise 8.6.1. However, in that case
we have to take care of the singularity in r = 0. Also we have to take the artificial
boundary condition in r = 0 into account.

A more natural approach is the following. We derive the weak formulation and
Galerkin equations for the original 3D problem. This does not contain any singu-
larity in r = 0, nor do we need an artificial boundary condition. Afterwards we
take into account that the solution is constant in θ-direction by assuming that the
basis functions are constant in that direction. So integration in the θ-direction is
trivial. This approach also leads to a 2D formulation, but without special require-
ments.

Exercise 8.6.2 Let u satisfy Poisson’s equation −Δu = f on a 3D circle-symmetric re-
gion. Let u = g at the boundary with g independent of θ. Show that the Galerkin equations
corresponding to this problem are given by

n

∑
j=1

uj

∫
Ω

∇ϕi · ∇ϕj dΩ =
∫
Ω

f ϕi dΩ. (8.6.3)

�

In order to compute the element matrix and vector on this element we have to
transform the Expression (8.6.3) from (x, y, z)-coordinates to (r, z)-coordinates.

Exercise 8.6.3 Show that the determinant of the Jacobian matrix of the transformation is
equal to r. �

Exercise 8.6.4 Show that the elements of the element matrix are given by

sij = 2π
∫
erz

(
∂ϕi

∂r

∂ϕj

∂r
+

∂ϕi

∂z

∂ϕj

∂z
)r drdz. (8.6.4)

Hint: transform
∂ϕi
∂x ,

∂ϕi
∂y and

∂ϕi
∂z into

∂ϕi
∂r and

∂ϕi
∂z , using the transformation (8.6.1) �
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8.7 Theoretical remarks

In the mathematical parts of Chapters 5 to 7 it has been shown that the error made
by the finite element method (measured in energy norm), is smaller than a constant
C times the error we would have if we interpolated the exact solution by the same
type of approximation:

‖u − uh‖L ≤ C‖u − uI‖L, (8.7.1)

with u the exact solution, uh the FEM-solution, uI the interpolation of u and ‖ ‖L

the energy norm. In a minimization problem C = 1, proving that the FEM solution
is the best approximation in the energy norm. In a general weak formulation, the
constant C is related to the ratio of the symmetric and the anti-symmetric part of
the operator L. For example in a convection-dominated flow C is large, whereas
for diffusion dominated problems C is close to 1.

From (8.7.1) it follows that if we want to estimate the FEM error it is necessary to
estimate the interpolation error. Suppose we use an approximation by kth degree
polynomials. Then one can prove, under certain (geometrical) conditions, that the
error in L2 norm is of the order hk+1. So for a linear approximation, the interpola-
tion error in L2 norm is O(h2).

If the order of the differential equation is 2m (Poisson m = 1, bi-harmonic m =
2), then the energy norm contains derivatives of order m. In general, for each
derivative, the interpolation error is reduced by an order 1. So the interpolation
error in energy norm of an 2m-th order operator using k-th degrees polynomials
is of order hk+1−m. This means that also the FEM error in energy norm is of order
hk+1−m. Under certain conditions one can prove that this error in L2 norm is again
of order hk+1, which is comparable to the interpolation error.

In the above text we mentioned ”under certain (geometrical) conditions”. One
can prove that the elements must satisfy some requirements in order that these
estimates can be applied. It goes beyond the scope of this book to give exact for-
mulations, but the following rules are generally valid.

• In case of triangles, the largest angle must not be too close to π. A practical
bound is that all angles must be smaller than 135◦. A large angle gives a bad
approximation of the derivatives and thus a large error. Sharp corners, on
the other hand, do not pose problems.

• In case of quadrilaterals, it is necessary that the mapping to a standard square
is invertible. In fact the size of the Jacobian must be not too large. In practice
this also implies that corners must not be much larger than 135◦.

All before mentioned estimates are valid in case of exact integration and under the
condition that the whole region is completely covered by elements. In practice,
however, one uses numerical integration and the boundary will be approximated
by polynomials. It is very difficult to make an estimation of the effect of these
approximations. Under certain special conditions, one can prove some theorems
about this matter ([11]), but these proofs are very complicated.

In general one can state the following:

If we use polynomials of degree k to approximate the solution, it is also necessary
to approximate the boundary of the region by polynomials of the same order. Oth-
erwise the order of accuracy is reduced to lower order. So with linear elements, it
is sufficient to approximate the boundary of the region by piecewise linear poly-
nomials, i.e. straight lines. But with quadratic elements, it is necessary to use a
quadratic approximation of the boundary.
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With respect to the numerical integration, the rules are more complicated.

In Cartesian coordinates it is necessary that the numerical integration is exact for
polynomials of degree 2k− 2m, otherwise the accuracy of the global approximation
is reduced. Hence for a second order differential equation (m = 1), we have the
following requirements:

• Linear elements (k = 1), the integration must be exact for constant polyno-
mials.

• Quadratic elements (k = 2), the integration must be exact for quadratic poly-
nomials.

• Third degree elements (k = 3), the integration must be exact for fourth order
polynomials.

For that reason Newton Cotes integration can only be applied to linear and quadratic
elements.

In other types of coordinate systems, like for example cylindrical coordinates, the
situation is more complex. Actually the rules above remain valid if we adapt the
integration rules to reflect the type of coordinates. For example if we incorporate
a factor r in the integration rules for cylindrical coordinates then the same type
of rules apply. If we do not adapt the integration rules, the numerical integration
must be exact for polynomials of degree 2k − 2m + 1. So in that case the Newton
Cotes rule can only be applied to linear elements.

8.8 Fourth order problems

Until now we have limited ourselves to second order problems. This is not without
a reason, fourth order problems are much more difficult to solve. An extended
description of the various methods to handle this kind of problems is beyond the
scope of this book. Nevertheless we shall show some basic techniques used in the
literature. These methods will be shown using a very simple example, the clamped
beam.

8.8.1 The clamped beam

Consider the beam sketched in Figure 8.10, clamped in both ends 0 and l.

x=0 x=l

q(x)

w

Figure 8.10: Clamped beam with load q.
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On the beam we have a given load q(x). The transverse displacement w of the
neutral line with respect to the equilibrium satisfies the differential equation:

EI
d4w

dx4
= q, (8.8.1)

with EI the flexural rigidity of the beam. Boundary conditions are

w(0) = w(l) = 0,
dw

dx
(0) =

dw

dx
(l) = 0. (8.8.2)

Note that for this fourth order problem we have to give 2 boundary conditions on
the whole boundary.
The transverse displacement w is the solution of the minimization problem

min
w

l∫
0

1

2
EI(

d2w

dx2
)2 − qw dx. (8.8.3)

Exercise 8.8.1 Prove (8.8.3). �

In order to solve the minimization problem (8.8.3), Ritz’s method may be applied
and we use the FEM to construct the basis functions ϕi(x).
Suppose that we approximate w by a linear combination of basis functions ϕi(x)

wh(x) =
n

∑
j=1

αj ϕj(x). (8.8.4)

Then the Ritz equations corresponding to 8.8.3 are given by

n

∑
j=1

αj

l∫
0

EI
d2ϕj

dx2

d2ϕi

dx2
dx =

l∫
0

qϕi dx. (8.8.5)

Exercise 8.8.2 Prove (8.8.5). �

The basis functions ϕi must satisfy the boundary conditions (8.8.2), but also they
have to be continuously differentiable, i.e. ϕi(x) ∈ C1(0, l). Why?

The simplest element in the FEM, that can be used to construct the basis functions
is a 2 node element. In order to ensure the continuity of the derivatives over the
element boundaries, Hermitian interpolation is applied. In each node i we introduce
two unknowns wi and (wx)i and write the interpolation per element as

wh(x) =
2

∑
j=1

wjψj0(x) +
2

∑
j=1

(wx)jψj1(x), (8.8.6)

with ψj0(x) and ψj1(x) third degree polynomials, satisfying

ψj0(xi) = δij,
dψj0

dx
(xi) = 0, ψj1(xi) = 0,

dψj1

dx
(xi) = δij (8.8.7)

So the parameters αj in (8.8.4) are either wj or (wx)j.

Exercise 8.8.3 Express the basis functions ψj0(x) and ψj1(x) in terms of the linear basis
functions λi(x). �
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Exercise 8.8.4 Compute with the basis functions ψj0 and ψj1 the element matrix corre-
sponding to (8.8.5) for this element.
What is the size of the element matrix?
Suppose that q is a constant. Compute the element vector. �

In order to get continuity of the first derivatives, we had to introduce the first
derivatives of the unknown as parameters. There are in fact alternatives but they
are more complicated.

If we extend the example to 2D or even 3D problems, construction of basis func-
tions satisfying continuity of the first derivatives is much more cumbersome. For
example if we want a complete polynomial (i.e. a polynomial containing all terms
until a certain degree) on a triangle satisfying continuity of the first derivatives,
it is necessary to use a fifth degree polynomial with 21 parameters. The reason is
that we need continuity both in tangential and normal direction. If we drop the
demand for a complete polynomial, the degree may be lowered a bit, but still the
element is very complicated.

For that reason one can find many attempts in the literature to get rid of the C1

requirement. In fact one can find two major solution strategies:

• violate the C1 continuity requirement and carry out the assembly procedure
as if there is no problem, in other words use non-conforming elements.

• Use a mixed formulation

The non-conforming approach is wrong in general, but can be justified if special
conditions are met. These conditions are formulated in terms of the Patch test of
Irons ([21]). It is not simple to apply this condition for general PDEs.

The mixed formulation is easier to generalize and we shall do the beam problem
as a simple example.

8.8.2 A simple example of the mixed approach

The idea of the mixed approach is simple. We formulate the minimization problem

(8.8.3) in terms of two variables w and β (= dw
dx ), instead of one (w). These variables

are considered to be independent, but we relate them by the constraint

β − dw

dx
= 0. (8.8.8)

So we can rewrite the minimization problem as

min
w,β

l∫
0

1

2
EI(

dβ

dx
)2 − qw dx, (8.8.9)

under the constraint (8.8.8). A well known technique from the theory of mini-
mization with constraints is the penalty approach. We multiply the squared of the
constraint by a number α

2 and add this to the minimization problem:

min
w,β

l∫
0

1

2
EI(

dβ

dx
)2 +

α

2
(β − dw

dx
)2 − qw dx, (8.8.10)
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If α is large the minimum is reached for β − dw
dx small. So the constraint is satisfied

approximately. The final step is to solve the penalized minimization problem by
the FEM. Both β and w are approximated by linear polynomials per element

βh =
n

∑
j=1

β j ϕj(x), wh =
n

∑
j=1

wj ϕj(x). (8.8.11)

The boundary conditions can be formulated in terms of w and β.

Exercise 8.8.5 Show that the Ritz equations corresponding to (8.8.10) using the approxi-
mation (8.8.11) are given by

n

∑
j=1

wj

l∫
0

α
dϕi

dx

dϕj

dx
dx −

n

∑
j=1

β j

l∫
0

αϕj
dϕi

dx
dx =

l∫
0

qϕi dx, i = 1, . . . , n,

(8.8.12)

−
n

∑
j=1

wj

l∫
0

αϕi

dϕj

dx
dx +

n

∑
j=1

β j

l∫
0

(EI
dϕi

dx

dϕj

dx
+ αϕi ϕj) dx = 0, i = 1, . . . , n.

(8.8.13)

Is the stiffness matrix symmetrical? �

Exercise 8.8.6 Order the unknowns in the sequence w1, w2, β1, β2. Compute the element
matrix and vector under the condition that E, I, α and q are constant. �

The formulation given above is only one of the many different mixed formulations
one can find in the literature. It is just a demonstration, of how by introducing new
variables, one can effectively reduce the order of the equations. In practice, how-
ever, one must be careful with this kind of approximations, since in many cases
the various unknowns must approximated with different types of polynomial. A
discussion of this subject goes beyond the scope of this book.

8.9 Summary of Chapter 8

In Chapters 6 and 7 linear interpolation functions were used. In this chapter it
has been demonstrated how the basis functions for higher order elements can be
derived.
Also quadrilaterals, which require a special approach to ensure continuity, have
been treated. For quadrilaterals as well as curved elements, the standard technique
is mapping an arbitrary element onto a standard (reference) element. All integrals
are evaluated on this reference element.

Fourth order problems have been introduced for a very simple 1D example, just to
show the difficulties and possible solutions.



Chapter 9

Solution of large systems of
equations

Objectives

In this chapter we will focus on the solution of systems of linear equations resulting
from the discretization of PDE’s. The corresponding matrices are generally large
and sparse. There are two classes of methods to solve such systems of equations:
direct and iterative methods. All direct solvers are variants of Gaussian elimina-
tion.
We shall first deal with the direct solvers. Special storage techniques to reduce the
amount of memory like band methods and profile methods are treated. Using a
special renumbering technique, the size of the matrix can be made semi-optimal.
Direct methods sometimes fall short. This happens mostly, when the number of
unknowns becomes excessive like in large 3D problems. Even with optimal num-
bering the fill-in becomes huge and the L and U matrices no longer fit into mem-
ory. That is where iterative methods enter the picture. Historically there has been a
trade off between memory and computing time. This certainly is true for the earlier
iteration methods like Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR)). But
in the early seventies two very different methods became popular fast: the Conju-
gate Gradient Method (CG), later generalized to Bi-CGStab and the Multigrid Method.
These methods were so successful in fact, that they challenged the direct methods
in their own back yard: computation time. The Multigrid method even achieves
theoretically the best result possible: the number of computations increases linearly
with the number of unknowns.

We start with classical iteration methods and derive convergence and stop crite-
ria for them. Then we turn our attention to Krylov space methods like CG and
Bi-CGStab. We shall see, that the success of these methods much depends on the
choice of preconditioner and that classical iteration methods may serve as a precon-
ditioner. Finally we shall describe a very powerful preconditioner: Incomplete LU
decomposition.

Finally we shall turn our attention to Multigrid. There too we shall see that the suc-
cess of the method will depend on various strategic choices. The preconditioners
are called smoothers in Multigrid.

Often Multigrid and CG like methods are presented as competitors. There is no
need for that: Multigrid is an excellent preconditioner for Bi-CGStab.
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9.1 Direct methods

9.1.1 Introduction

The discretization of an elliptic PDE leads always to a system of (non-)linear equa-
tions. As will be seen in Section 9.7, non-linear systems are solved by a series of
linear problems with the same structure. So a fast solution of systems of linear
equations is of great importance for the discretization of PDE’s.
The matrices resulting from discretization are in general large and sparse. If a suit-
able numbering is applied, these matrices have also a band structure. Matrices
for which only elements within the band are stored are referred to as band matrices.
Matrices for which only the non-zero elements are stored are known as compact ma-
trices. They require extra information about the position of the non-zero elements.

Exercise 9.1.1 Assume that we discretize the Poisson equation with Dirichlet boundary
conditions on a rectangular domain by a central finite difference discretization. Suppose
that the number of nodes in each coordinate direction is equal to n + 2.
Show that the size of the discretization matrix is equal to n × n in R1, n2 × n2 in R2 and
n3 × n3 in R3. �

Exercise 9.1.2 Suppose that we use a natural numbering.
Show that the band width of the matrices in Exercise 9.1.1 is equal to 3 in R1, 2n + 1 in
R2 and 2n2 + 1 in R3. �

Exercise 9.1.3 Show that the number of non-zero elements per row for the matrices in
Exercise 9.1.1 is equal to 3 in R1, 5 in R2 and 7 in R3. �

Exercise 9.1.4 Compute the number of entries that we have to store for the matrices in
Exercise 9.1.1 in case of a full matrix, a band matrix and a compact matrix for n = 10, 100
and 1000 respectively. How many bytes is this, if a real takes 8 bytes? �

The previous exercises show that for n = 10 the band matrices in all three dimen-
sions can be stored in the internal memory of the computer, but that for n = 100
only the 1D and 2D matrices fit into memory. In the case of n = 1000 even the 2D
band matrix is too large and the 3D compact matrix fits only in very large 64 bits
computers.
In the next sections we shall treat some basis techniques for direct and linear
solvers.

9.1.2 Gaussian elimination

As mentioned in Section 9.1.1 all direct solvers are variants of Gaussian elimina-
tion. In numerical applications, Gaussian elimination is carried out in the form of
a LU-decomposition. In case of a band matrix, which arises if we apply a discretiza-
tion technique on a structured (rectangular) grid, all elements outside the band are
zero. This property is kept after Gaussian elimination, provided rows and columns
are not interchanged. For unstructured meshes, like in FEM, a more sophisticated
approach is necessary: the profile method. A good numbering of the equations is
essential to keep the number of elements to be stored as low as possible.
First we start by explaining the LU-decomposition, then band methods are treated,
followed by profile methods. Finally we make a few remarks about automatic op-
timal renumbering techniques.
For completeness we give a short description of the Gaussian elimination process.
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Consider the system of linear equations:

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
... (9.1.1)

an1x1 + an2x2 + . . . + annxn = bn,

or in matrix vector notation
Ax = b. (9.1.2)

Gaussian elimination transforms system (9.1.2) into an upper triangular matrix by
elementary row operations.
Consider the matrix A0 extended with the right-hand side b.

A(0) =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
an1 an2 . . . ann bn

⎞⎟⎟⎟⎠ . (9.1.3)

Subtract the first row multiplied by a suitable constant from the other rows, such
that the first column becomes zero from row two. Define:

mj1 =
aj1

a11
j = 2, 3, . . . n.

a
(1)
jk = ajk − mj1a1k k = 1, . . . , n

and b
(1)
j = bj − mj1b1.

(9.1.4)

One easily verifies that a
(1)
j1 = 0, j = 2, 3, . . . , n. This produces a new extended

matrix

A(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n b1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

... a
(1)
32 a

(1)
33 . . . a

(1)
3n b

(1)
3

...
...

...
...

...

0 a
(1)
n2 a

(1)
n3 . . . a

(1)
nn b

(1)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9.1.5)

It can be verified easily that the system of equations, described by this new ex-
tended matrix has the same solution as the original system 9.1.2. Now subtract
the second row times a constant from the next rows such that the second column
becomes zero from row number 2. Hence:

mj2 =
a
(1)
j2

a
(1)
22

j = 3, 4, . . . n.

a
(2)
jk = a

(1)
jk − mj2a

(1)
2k k = 2, . . . , n

and b
(2)
j = b

(1)
j − mj2b

(1)
2 .

(9.1.6)

This gives

A(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n b1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
...

...
...

...

0 0 a
(2)
n3 . . . a

(2)
nn b

(2)
n

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.1.7)
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The ith step of the iteration:

mji =
a
(i−1)
ji

a
(i−1)
ii

j = i + 1, i + 2, . . . n.

a
(i)
jk = a

(i−1)
jk − mjia

(i−1)
ik k = i, i + 1, . . . , n

and b
(i)
j = b

(i−1)
j − mjib

(i−1)
i .

(9.1.8)

If we proceed this process until i = n − 1, we get the matrix

A(n−1) =

⎛⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n b1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
... 0

...
...

...

0 0 . . . 0 a
(n−1)
nn b

(n−1)
n

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.1.9)

This is an upper triangular system. The solution can be determined immediately
by back substitution. The quantities mji are called multiplicators and the quantities

ai−1
ii pivots. Since in the ith step we have to subdivide by the pivot ai−1

ii to compute
the multiplicators mji, a necessary and sufficient condition for the application of

the Gaussian elimination process is that none of the pivots ai−1
ii is zero. Usually one

interchanges rows and/or columns of the matrix to avoid zero (or small) pivots.
However, in this book we shall not use this interchanging process called pivoting .

9.1.3 LU-decomposition

The Gaussian elimination process, transforms the matrix A with elements aij by
elementary row operations into an upper triangular matrix U:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n

... 0 a
(2)
33 . . . a

(2)
3n

...
...

. . .
. . .

...

0 0 . . . 0 a
(n−1)
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9.1.10)

Besides, that we can store the multiplicators mji, which are used to create the zero
lower triangle, into a lower triangular matrix L:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

m21 1
. . . . . .

... m32
. . .

. . . . . .
...

. . .
. . . 0

mn1 mn2 . . . mn,n−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9.1.11)

One easily verifies that
A = LU. (9.1.12)

Once we have constructed the L and U matrix, the solution of Ax = b is straight
forward. Substitution of (9.1.12) gives

LUx = b. (9.1.13)
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Define Ux = y, then the sequence of solving is:

Ly = b, Ux = y. (9.1.14)

As the form of the matrices L and U is triangular, these equations can be solved
immediately.

Exercise 9.1.5 Let L have elements lij with

lij =

⎧⎨⎩
0, if i < j,
1, if i = j,
lij, if i > j.

(9.1.15)

Show that the solution of Ly = b is given by

yi = bi −
i−1

∑
k=1

likyk. (9.1.16)

�

Exercise 9.1.6 Let U have elements uij with

uij =

⎧⎨⎩
0, if i > j,
1, if i = j,
uij, if i < j.

(9.1.17)

Show that the solution of Ux = y is given by

xi = yi −
n

∑
k=i

uikxk. (9.1.18)

In which sequence do we have to compute xi? �

An alternative way to compute the matrices L and U is by direct substitution. De-
fine the matrices L and U as in Exercises 9.1.5 and 9.1.6. Since A = LU we have

aij =
n

∑
k=1

likukj =
min(i,j)

∑
k=1

likukj. Why? (9.1.19)

Exercise 9.1.7 Show that lij and uij are defined by the following relations

uii = aii −
i−1

∑
k=1

likuki,

uij = (aij −
i−1

∑
k=1

likukj)/uii,

lij = (aij −
j−1

∑
k=1

likukj)/ujj.

(9.1.20)

Give the sequence in which uij and lij can be computed. �

From this exercise we see that the LU-decomposition is unique iff the diagonal ele-
ments uii are non-zero. This is equivalent to having non-zero pivots during Gaus-
sian elimination. In case the pivots are small it may be necessary to interchange
rows and/or columns. However, in case of discretization methods, it is common
practice to avoid pivoting, since this destroys the structure of the matrix. In many
cases the discretization matrix has the property that pivoting is not required.
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9.1.4 Band method

When we discretize a PDE on a rectangular structured grid, the matrix we get is
always a band matrix, provided a natural numbering is chosen. The band width of
such a matrix defines the amount of storage needed as well as the amount of work
required to solve the system of equations.

Exercise 9.1.8 Let the band width of the matrix A be equal to 2b + 1, i.e. aij = 0 if
|i − j| > b.
Prove by induction that lij = 0 if i > j + b and uij = 0 if j > i + b. �

From Exercise 9.1.8 it follows that L and U are zero for elements outside the band.
So it is indeed sufficient to store only the elements inside the band. Band matrices
are stored column-wise, hence (2b+ 1)× n positions for non-symmetrical and (b+
1)× n positions for symmetrical matrices are needed. So the storage of a typical
non-symmetrical band matrix looks like:

A =

⎛⎜⎜⎜⎜⎜⎝
0 . . . 0 0 a11 a12 a13 . . . a1,1+b

0 . . . 0 a21 a22 a23 a24 . . . a2,2+b

0 . . . a31 a32 a33 a34 a35 . . . a3,3+b
...

...
...

...
...

...
...

an,n−b . . . an,n−2 an,n−1 ann 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ (9.1.21)

9.1.5 Profile method

Consider a matrix A, which is the result of discretizing a PDE either by FEM, FVM
or FDM. Let i be an arbitrary node in the grid with neighbors j, k, l, . . . , m (Figure
9.1).

Figure 9.1: Nodal point i with neighbors.

Node i is connected to all of its neighbors, which implies that in general the el-
ements aij, aik, . . . , aim are unequal to zero. If node n is not connected to i, then
ain=ani=0. Such elements in the matrix are called essential zeros. The fact that el-
ements are essentially zero is a property of the grid and not of the specific PDE.
Knowledge of essential zeros can be used to solve the system of equations effi-
ciently. A typical example is the band method treated in Section 9.1.4. Another
example is the profile method.

By profile of a matrix we mean the following:

Consider the ith row. Let aij be the first essential non-zero element in this row
counted from left to right. Hence j is the smallest column number in row i cor-
responding to an essential non-zero element. Then all elements aij, ai,j+1, . . . , aii

belong to the profile or envelope of the matrix.
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Consider on the other hand the ith column of A. Let j be the smallest row num-
ber in column j corresponding to an essential non-zero element. Then all elements
aji, aj,i+1, . . . , aii belong to the profile of the matrix. Mark that essential non-zero el-
ements may be zero by coincidence. However, these elements are still considered
to be non-zero. So actually a profile may be seen as a variable band. See Figure 9.2

band

profile

Figure 9.2: Example of a profile.

Exercise 9.1.9 Show that the profile of a matrix arising from the discretization of a PDE
is symmetrical. �

Exercise 9.1.10 Show that, if an LU-decomposition is applied, all elements outside the
profile remain zero. Elements inside the profile of the L and U matrix will be non-zero in
general . �

From Exercise 9.1.10 it is clear that it is sufficient to store only those elements of the
matrix that are inside the profile. Of course this requires a special storage scheme,
otherwise the amount of memory needed is not better than for a band matrix. A
standard storage method due to George [17] is the following one.

Let L be the lower triangle of the matrix A (without diagonal), D the diagonal and
U the upper triangle. Hence

A = L+D + U . (9.1.22)

The matrix A is stored in a one-dimensional array in the sequence

a11, a21, a22, a12, a31, a32, a33, a23, a13, . . .

where all the elements outside the profile are skipped. So the storage can be ex-
pressed as follows:
Start with diagonal element a11.
Next store all elements of row 2 of L from left to right, followed by the diagonal
element a22, followed by all elements of column 2 of U from the diagonal to the
top.
This process is repeated for all next rows and columns.
So the ith row/column is stored as:

ai,pi
, ai,pi+1, . . . , aii, ai−1,i, ai−2,i, . . . , api,i,

with pi the index of the first non-zero element in row i. In case of a symmetrical
matrix, of course the upper triangle is not stored.
To keep track of the start of each new row, it is sufficient to store the position of the
diagonal elements in the 1D array. This requires one extra integer array of length
n (why?).
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Exercise 9.1.11 Show how to find an arbitrary element aij in the lower triangular matrix
L. �

Exercise 9.1.12 Show how to find an arbitrary element aij in the upper triangular matrix
U . �

To perform an LU-decomposition on a profile matrix, it is necessary to apply an
adapted method: the profile method. Special in this method is the sequence in which
the elements of the LU-decomposition are computed. The sequence used is:

d11, l21, d22, u12, l31, l32, d33, u23, u13, . . .

So this is precisely the sequence of the matrix storage.

Exercise 9.1.13 Give the formulas to compute L, D and U, utilizing the profile structure.
�

In the literature sometimes other names for the profile method are used, like wave
front method and frontal solution method.
A simple example of a profile matrix is created by a one-dimensional problem with
periodical boundary conditions as sketched in Figure 9.3. In this problem point i is
connected to points i − 1 and i + 1 leading to a band width of 3. However, because
of the periodical boundary conditions, point n and 1 have the same unknown and

Figure 9.3: One-dimensional mesh, for problem with periodical boundary condi-
tions.

point 1 is connected to both n − 1 and 2. Point n − 1 connected to n − 2 and 1. The
corresponding matrix gets the structure as sketched in Figure 9.4. The band width
of this matrix is equal to n − 1, which means that in case of a band storage, the
matrix is full. The profile sketched in Figure 9.4b is much smaller.

Figure 9.4: a) Non-zero pattern of one-dimensional problem with periodical
boundary conditions, b) corresponding profile.

A good numbering may reduce the band width or the profile of the matrix consid-
erably. In the next section we shall deal with a simple but effective renumbering
algorithm.
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9.1.6 Renumbering techniques

For finite element methods various renumbering algorithms have been constructed.
Many of them are variants of the so-called Cuthill-McKee renumbering algorithm.
The Cuthill-McKee [14] algorithm is a renumbering technique developed to reduce
the band-width or envelope of a matrix. For an extended description see for ex-
ample George and Liu [17]. Of course it is always possible to compute the optimal
storage, but in general computation is so expensive that it takes more time than
solving the system of equations. All renumbering techniques are therefore semi-
optimal, in the sense that they try to optimize the storage, without performing to
many operations.

The idea of Cuthill-McKee is that the local envelope of a matrix is minimal if all
neighboring nodes have a number as close as possible to the node itself. Suppose
we have a starting node or a set of starting nodes. This starting set has node num-
bers 1 to n. Then the idea is to give all direct neighbors of this starting set the node
numbers from n + 1. This process is repeated until the complete set of nodes is
exhausted. There are a number of variants of this algorithm all of which try to
improve the envelope or profile, but the basic idea is the same.

Of course the difficult part of this process is how to find the starting set of nodes.
This may be done automatically, which may be relatively difficult or by hand. In
the last case one usually chooses a starting node (for example a corner node), or a
starting curve.

Figure 9.5 shows the result of the first 9 steps of Cuthill-McKee in a rectangular
grid. In the first step we start with the lower left point,indicated by a black circle.
In the next step the three surrounding nodes are added (white circles). Each next
set of nodes in the consecutive steps of the Cuthill-McKee algorithm, has been
marked with a circle with different fill-in. In step 9 we arrive at a set of vertical
nodes, which means that we are almost at an optimal numbering.

In reversed Cuthill-McKee we repeat the process in reversed order, starting with the
last set of nodes found. In the example this will lead to a natural ordering.

Figure 9.5: Example of the Cuthill-McKee algorithm.
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9.2 Generic iterative process.

In this and the subsequent sections we shall consider iterative methods. We start out
with a system of linear equations we want to solve: Ax = b. Then we choose a
start value x0 and we calculate the residual r0 = b − Ax0. Now we have to improve
x0 in some way, by adding a correction vector c0 to obtain a new estimate x1 =
x0 + c0. If we have been doing things right, the new residual r1 will in some way be
smaller than r0. After that the process repeats itself, until the residual has become
sufficiently small. Now the central question is of course: how to determine that
correction step ck to obtain xk+1 from xk?

Exercise 9.2.1 Prove that when we take ck = A−1rk, xk+1 solves Ax = b. �

So apparently ck = A−1rk would be the perfect choice, but unfortunately that is
not easier to solve than our original system. However, it sets us on a trail. We may
use an approximation P−1rk to A−1rk for ck. Such a matrix P is called a preconditioner.
Different preconditioners generate different iterative methods.

9.3 Defect correction

9.3.1 Algorithm

The defect correction or standard iteration algorithm is the direct implementation of
the above idea. It may be summarized in the following few lines of pseudo code
Defect correction algorithm

Presets: x0 = 0; r0 = b; k = 0
while ‖rk‖∞ > ε‖b‖∞ do

ck = P−1rk

xk+1 = xk + ck

rk+1 = rk − Ack

k = k + 1
end while

Exercise 9.3.1 Prove that the expression for rk+1 in this algorithm is equivalent to rk+1 =
b − Axk+1. �

Exercise 9.3.2 Let S be an N × N matrix with sj,j+1 = 1, j = 1, . . . , N − 1, sjk = 0

otherwise and let I be the identity matrix. We wish to solve Ax = f, with A = 2I −S−ST

and fk = 1, k = 1, . . . , N. Use defect correction with P−1 = 1
2 I. Use Matlab. Compare

the number of iterations with N=10, N=100 and N=1000 to arrive at a residual with
‖rk‖∞ < 10−4. �

9.3.2 Convergence of defect correction

Let ξ be the solution to Ax = b and εk = ξ − xk the error in the k-th iterate. We
may combine various lines of Algorithm (9.3.1) to obtain

rk+1 = (I − AP−1)rk, (9.3.1)

εk+1 = (I − P−1A)εk. (9.3.2)

Exercise 9.3.3 Prove the two relations from Equation (9.3.1) �
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Exercise 9.3.4 Prove that for any two matrices A, B that if

lim
k→∞

(AB)k = 0, (9.3.3)

then
lim
k→∞

(BA)k = 0. (9.3.4)

�

Exercise 9.3.5 Prove that rk = (I − AP−1)kr0. �

Exercise 9.3.6 Prove that εk = (I − P−1A)kε0. �

For the algorithm to converge, we must apparently have, that εk → 0 or equiva-
lently rk → 0. This is expressed by the following theorem.

Theorem 9.3.1 Let |λ1| ≥ |λ2| ≥ . . . ≥ λN be the eigenvalues of I − P−1A. Then the
defect correction method with matrix A and preconditioner P−1 converges if and only if
|λ1| < 1.

Proof
We prove the theorem for non defect matrices. Assume v1, v2, . . . , vN are the N
linear independent eigenvectors of I − P−1A, belonging to λ1, λ2, . . . , λN . Now ε0

can be written as a linear combination of those eigenvectors:

ε0 =
N

∑
j=1

αjvj, (9.3.5)

and since every multiplication with I − P−1A multiplies vj with αj we have:

εk = (I − P−1A)kε0 =
N

∑
j=1

αjλ
k
j vj. (9.3.6)

Now since λ1 is the largest eigenvalue in absolute value and |λ1| < 1, each term in
this sum will vanish eventually. Alternatively, if λ1 ≥ 1 the first term in the sum
will never vanish. �

The value |λ1| is also called the spectral radius of the matrix I − P−1A and denoted
ρ(I − P−1A).

9.3.3 Error estimate for defect correction

A closer look at Equation (9.3.6) reveals, that at the end of the day there will be
only one term left in that sum: the first. Let us assume that λ1 is an eigenvalue
with multiplicity 1 and let us also assume there is no eigenvalue −λ1. Then in the
long run

εk+1 ≈ λ1εk. (9.3.7)

This enables us to estimate the error for a defect correction process.

Theorem 9.3.2 εk+1 ≈ λ1
1−λ1

(xk+1 − xk).

Proof We subtract λ1εk+1 from both sides of Equation (9.3.7) and note that εk −
εk+1 = xk+1 − xk to obtain

(1 − λ1)εk+1 ≈ λ1(xk+1 − xk), (9.3.8)

and dividing both sides by 1 − λ1 gives the result.
The miracle is, that we can estimate the error in terms of things we know, viz xk

and xk+1. Things we know?? What about λ1 then? A little patience, we are coming
to that.
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9.3.4 Estimate of the spectral radius

We subtract Equation (9.3.7) with index k from that with index k + 1 to obtain

εk+1 − εk ≈ λ1(εk − εk−1). (9.3.9)

But εk − εk+1 = xk+1 − xk and the above expression transforms into

xk+1 − xk = λ1(xk − xk−1). (9.3.10)

Or letting dk = xk − xk−1, we find by applying standard least squares technique:

λ1 ≈ (dk+1, dk)

(dk, dk)
. (9.3.11)

Exercise 9.3.7 Show that for large k

εk+N = λN
1 εk. (9.3.12)

Infer from this that to gain one decimal digit you need

N = − 1
10 log λ1

(9.3.13)

iterations. �

9.3.5 M-matrices

An important class of matrices for which preconditioners can be constructed such
that the defect correction iteration converges are M-matrices. These often occur in
the context of partial differential equations.

Definition 9.3.1 A matrix A is called an M-matrix if

1. ajk ≤ 0, if j �= k,

2. A−1 ≥ 0.

Exercise 9.3.8 Show that a diagonally dominant Z-matrix is an M-matrix. Use the dis-
crete maximum principle of Chapter 3. �

Exercise 9.3.9 Show that an M-matrix has nonnegative diagonal elements. Use a con-
tradiction argument. Assume akk < 0 and consider Aek, with ek the k-th unit vector.
�

Exercise 9.3.10 Show that an upper triangular Z-matrix is an M-matrix if the diagonal
elements are positive. �

If A−1 ≥ 0 (so in particular if A is an M matrix) we can construct a convergent
preconditioner as follows. Split A into

A = P − Q, (9.3.14)

in which P−1 and Q have only nonnegative entries, also denoted by P−1 ≥ 0, Q ≥
0. Such a splitting is called regular. A famous theorem by Varga [42] guarantees that
ρ(P−1Q) < 1 for regular splittings. In other words, the defect correction process
converges with P as preconditioner.
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Exercise 9.3.11 Let the matrix B ≥ 0. Show that for any eigenvalue λ of B with corre-
sponding eigenvector v

(I − B)|v| ≤ (1 − |λ|)|v|, (9.3.15)

with |v|i = |vi|. Show, that if in addition (I − B)−1 ≥ 0 that

|v| ≤ (1 − |λ|)(I − B)−1|v|, (9.3.16)

and hence that |λ| < 1. �

Exercise 9.3.12 Prove Varga’s theorem. Use the result of the previous exercise. �

9.4 Classical preconditioners

In this section we shall introduce various classical preconditioners that have been
in wide use. Today they are not used much any longer in a context of defect cor-
rection. The reason for that we will see in our chapter on Krylov space methods
and Multi Grid methods.

9.4.1 Jacobi

The oldest and arguably simplest iterative method known to man is that of Jacobi.
Let’s write A = D − L − U in which D is the diagonal, L the lower triangular part
and U the upper triangular part of the matrix A. For Jacobi’s method we take P = D.
The iteration matrix becomes:

M = I − P−1A = I − D−1(D − L − U) = D−1(L + U). (9.4.1)

Exercise 9.4.1 Show, that Jacobi’s method may be written as

Dxk+1 = (L + U)xk + b. (9.4.2)

�

Exercise 9.4.2 Apply Jacobi’s method to the problem of Exercise 9.3.2. Estimate λ1 and
show from the numerical results that λ1 = 1 − kh2, with k a positive constant. �

Exercise 9.4.3 Prove using Gershgorin’s Theorem that Jacobi’s method converges if A is
diagonally dominant. �

Exercise 9.4.4 Prove that Jacobi’s method converges if A is an M-matrix. �

9.4.2 Gauss-Seidel

With the same notation as in the previous section we take P = D − L to obtain the
method of Gauss-Seidel. Note that we in general do not calculate P−1 itself, since
the defect correction algorithm only requires us to solve the set Pck = rk. That is
easy in this case, because it only requires backsubstitution.

Exercise 9.4.5 Prove that Gauss-Seidel’s method can be written as

(D − L)xk+1 = Uxk + b. (9.4.3)

�
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Exercise 9.4.6 Prove that Gauss-Seidel’s iteration matrix is given by

M = I − P−1A = I − (D − L)−1(D − L − U) = (D − L)−1U. (9.4.4)

�

Exercise 9.4.7 Prove that Gauss-Seidel converges if A is an M-matrix. �

Gauss-Seidel’s method converges for an important class of practical problems, the
positive definite problems. Roughly all those that come from a minimization prob-
lem.

Theorem 9.4.1 Let A = D − L − LT be positive definite. Then Gauss-Seidel’s method
converges.

Proof
We have to show that all eigenvalues of M = (D − L)−1LT are in absolute value
less than 1. Let λ be an eigenvalue of M, with corresponding eigenvector v. We
have:

(D − L)−1LTv = λv, (9.4.5)

or equivalently

LTv = λ(D − L)v. (9.4.6)

This eigenvalue λ may be complex and the corresponding eigenvector will also be
complex in that case. The conjugate complex quantities λ̄ and v̄ will be eigenvalue
and eigenvector too, since A is a real matrix. We define the ordinary inner product
on complex spaces:

(x, y) =
n

∑
k=1

x̄kyk. (9.4.7)

(Observe that (v, v) > 0 unless v = 0 and that (v, Av) > 0 unless v = 0.) Consider

(v, Av) = (v, (D − L − LT)v), (9.4.8)

= (v, (D − L)v)− λ(v, (D − L)v), by Equation (9.4.6), (9.4.9)

= (1 − λ)(v, (D − L)v). (9.4.10)

We also have:

(v, Av) = (v, (D − L − LT)v), (9.4.11)

= (v, (D − LT)v)− (v, Lv), (9.4.12)

= (v, (D − LT)v)− (LTv, v), (9.4.13)

= (v, (D − LT)v)− (λ(D − L)v, v), (9.4.14)

= (v, (D − LT)v)− λ̄(v, (D − LT)v), (9.4.15)

= (1 − λ̄)(v, (D − LT)v). (9.4.16)

Because A is positive definite λ cannot be equal to 1. Hence(
1

1 − λ
− 1

1 − λ̄

)
(v, Av) = (v, (2D − L − LT)v), (9.4.17)

= (v, Av) + (v, Dv), (9.4.18)

and therefore (
1

1 − λ
− 1

1 − λ̄
− 1

)
(v, Av) = (v, Dv). (9.4.19)
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Because A is positive definite, so is D (why?) and we find

1

1 − λ
− 1

1 − λ̄
− 1 > 0, (9.4.20)

1

1 − λ
− 1

1 − λ̄
> 1, (9.4.21)

1 − λ̄ + 1 − λ

(1 − λ)(1 − λ̄)
> 1, (9.4.22)

2 − 2�(λ)
1 − 2�(λ) + |λ|2 > 1, (9.4.23)

in which �(λ) denotes the real part of λ. The denominator in Inequality (9.4.23) is
always positive (why?) hence

2 − 2�(λ) > 1 − 2�(λ) + |λ|2, (9.4.24)

|λ|2 < 1. (9.4.25)

�

9.4.3 Successive Overrelaxation SOR

Successive overrelaxation (SOR) has been devised as an improvement on Gauss-

Seidel’s method. The preconditioner of choice is P = 1
ω (D − ωL) in which ω > 0

is a parameter that still has to be chosen. It comes down to multiplying the Gauss-
Seidel correction in each point by ω before applying it. Since the back substitution
in Gauss-Seidel uses already updated points this works recursively in a fairly com-
plex way. The term overrelaxation really applies only for values ω > 1, for ω < 1
you have underrelaxation.

Exercise 9.4.8 Show that the SOR process can be expressed as

(D − ωL)xk+1 = ((1 − ω)D + ωU)xk + ωb. (9.4.26)

�

Exercise 9.4.9 The iteration matrix M for a defect correction method is I − P−1A. Show
for the SOR iteration matrix Mω:

Mω = (D − ωL)−1((1− ω)D + U). (9.4.27)

�

Theorem 9.4.2 If A is positive definite and 0 < ω < 2, then SOR converges.

Exercise 9.4.10 Prove Theorem 9.4.2 in the same way as Theorem 9.4.1 �

Apparently it is important how to choose ω. There are a number of theoretical
results on that, that are valid for matrices A of a special structure: diagonally block
tridiagonal. That is, the matrix consists of blocks and only the diagonal, superdiagonal
and subdiagonal blocks may be nonzero. Moreover, the diagonal blocks must be
diagonal matrices themselves.

Exercise 9.4.11 Let V be a rectangle with a regular grid. A checker board numbering
of the nodes is constructed as follows. The points are painted white and black alternately in
the same pattern as the squares of a checkerboard. Now first the black points are numbered
and after that the white points. Show that for the 5-point Laplace molecule the resulting
matrix is a 2 × 2 block matrix with diagonal block matrices in the diagonal blocks. �
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Exercise 9.4.12 Let V be a rectangle with a regular grid that has been obliquely num-
bered. Show that for the 5-point Laplace molecule the resulting matrix is diagonally block
tridiagonal. �

For diagonally blocktridiagonal matrices there is a functional relationship between
the eigenvalues λω,k of Mω, the iteration matrix of SOR and the corresponding
eigenvalues λ1,k of M1 the iteration matrix of Gauss-Seidel.(

λω − 1 + ω

ω

)2

= λωλ1. (9.4.28)

For a proof see [5].

Now let |λ1,1| = ρ(M1) the spectral radius of the Gauss-Seidel iteration matrix. For
diagonally block tridiagonal matrices A the following expression for the optimal
value of ω holds:

ωopt =
2

1 +
√

1 − λ1,1

. (9.4.29)

So to estimate the optimum value of ω we have to know the value of λ1,1. It is
possible though, to estimate this value during the SOAR process using Equation
(9.3.11) to estimate λω,1 and subsequently use Equation (9.4.28) to estimate λ1,1

Care has to be taken however, that the eigenvalue belonging to the spectral radius
does not become complex, because in that case the use of estimate (9.3.11) is no
longer justified.

Exercise 9.4.13 Let A be a real matrix with complex eigenvalues λ1 and λ̄1 such that
|λ1| > |λ2| ≥ |λ3| . . .. Show that two components survive in the error:

εk ≈ a1λk
1v1 + ā1λ̄kv̄1. (9.4.30)

�

In the remaining exercises of this section you may assume that A is a positive
definite diagonally blocktridiagonal matrix.

Exercise 9.4.14 Show from Equation (9.4.28) that λω,k is complex if

λ1,k <
4(ω − 1)

ω2
. (9.4.31)

Show from Equation (9.4.28) that if λω,k is complex, then |λω,k| = |ω − 1|. (Hint: What
is the product of the roots of a quadratic equation) �

Exercise 9.4.15 Show that when ω = ωopt that

λ1,1 =
4(ω − 1)

ω2
. (9.4.32)

Show using Exercise 9.4.14 that when ω > ωopt all eigenvalues of Mω lie on a circle in
the complex plane with radius ω − 1. �

Exercise 9.4.16 Suppose λ1 = 0.9999. Estimate the number of iterations to gain one
decimal digit using Gauss-Seidel. (Use Exercise 9.3.7) Calculate λω,1 = 1 − ωopt and
estimate the number of iterations to gain one decimal using optimal SOAR. �
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9.4.4 Block variations

Block variations of Jacobi, Gauss Seidel and SOAR can be used if the matrix A in
the system of equations Ax = b is a block matrix and the diagonal blocks can be
solved easily, for example if they are tridiagonal. The convergence properties of
block variations are a bit better than those of the standard methods.

9.4.5 Operation count

In numerical approximations of PDE’s the number of unknowns per equation is
fixed. In that case it is easy to estimate the operation count per iteration. Let N
be the number of unknowns, then clearly the number of operations for a matrix
vector multiplication takes kN operations (multiplication + addition), with k the
number of unknowns per equation. Solving the preconditioner equation takes mN
operations, m < k. If we take the two matrix additions into account and the cal-
culation of ‖rk‖ for the stop criterion we end up with (k + m + 3)N operations per
iteration.

How many iterations do we need? Basically this depends on the accuracy we
demand, but a good measure for that is the number of iterations n to gain one
extra accurate decimal. This number n is given by (see Exercise 9.3.7)

n = − 1
10 log ρ

, (9.4.33)

or using natural logarithms

n = − ln 10

ln ρ
= − 2.3

ln ρ
, (9.4.34)

with ρ the spectral radius of the iteration matrix I − P−1A. This spectral radius is
for PDE matrices and the Jacobi and Gauss-Seidel methods 1 − kph2. Here kp is a
constant depending on the problem, the form of the region and the method.

Exercise 9.4.17 Show, using Equation (9.4.29) and Exercise 9.4.15 that for diagonal block-
tridiagonal matrices the spectral radius of the SOAR iteration matrix for optimal ω is
ρ = 1 − k′ph. �

Since roughly h−1 = N
1
2 for two dimensional problems and h−1 = N

1
3 for three

dimensional problems we find

n =
2.3

kph2
= Kp N, (9.4.35)

for 2D Jacobi and Gauss Seidel and

n =
2.3

kph
= Kp N

1
2 , (9.4.36)

for 2D optimal SOAR. Since these are the number of iterations and the opera-
tion count per iteration is O(N) the total operation count to gain one digit (2D) is

nO(N) = KN2 for Gauss Seidel and Jacobi and nO(N) = KN
3
2 for optimal SOAR.

K depends on the method. For 3D these numbers are: KN
5
3 and KN

4
3 respectively.
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9.5 Krylov Space Methods

Our treatment of Krylov space methods has to be superficial. We shall only con-
sider CG in detail and out of the numerous other possibilities we shall only present
BiCG-Stab in algorithmic form. The reader who wants to have a more thorough
understanding of the subject should consult [41].

9.5.1 Introduction

We first consider simple standard iteration without preconditioning on Ax = b.

Let us consider the form of the error after n + 1 iterations (see Exercises 9.3.5 and
9.3.6):

rn+1 = (I − A)n+1r0 = Pn+1(A)r0, (9.5.1)

εn+1 = (I − A)n+1ε0 = Pn+1(A)ε0. (9.5.2)

Pn+1(A) is an n + 1-st degree matrix polynomial. Let us assume, that A has eigen-
values λ1, λ2, . . . , λN and corresponding eigenvectors v1, v2, . . . , vn. We may take
x0 = 0 and r0 = b without loss of generality and express r0 as a linear combination
of eigenvectors:

r0 =
N

∑
k=1

αkvk, (9.5.3)

and because Avk = λkvk we have

rn = (I − A)nr0 =
N

∑
k=1

αk(1 − λk)
nvk, (9.5.4)

and in general for any matrix polynomial Pn(A):

Pn(A)r0 =
N

∑
k=1

αkPn(λk)vk. (9.5.5)

Immediately we deduce that for convergence of the standard iteration all λk must
be within a circle in the complex plane with radius 1 and real midpoint 1 (see
Figure 9.6) The polynomial (1 − λ)n is not specifically chosen to make the residual
as small as possible. On the contrary, let us draw a picture of (1 − x)10 on the
interval (0, 2).
You can see, that for eigenvectors with eigenvalues between 0.4 and 1.6 there is a
very good convergence, but for eigenvalues close to 0 and close to 2 the conver-
gence is rather bad.

There are two things that could be done about that. First you could try to find a
better polynomial than (1 − λ)n. That is what Krylov (sub)space methods do. Sec-
ondly you could try to treat the remaining parts of the spectrum differently. That
is what Multigrid methods do.

9.5.2 The Krylov Space

The Krylov subspace of dimension k is spanned by the vectors r0, Ar0, A2r0, . . . , Ak−1r0

and denoted by Kk(A; r0).

Exercise 9.5.1 Show that in standard iteration rk ∈ Kk+1(A; r0). Infer from this that
xk+1 ∈ Kk+1(A; r0). �

Krylov subspace methods all try to optimize the approximate solution in the k-
dimensional subspace Kk(A; r0). This can be done in various ways of which we
will consider only two: Conjugate Gradients and Bi-CGStab.



9. Solution of large systems of equations 181

Im

Re
3

1

2

1

2

λ

λ

Figure 9.6: Region of convergence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.7: Graph of (1 − x)10.

9.5.3 Conjugate Gradients

The Conjugate Gradient method can best be explained for A positive definite. In that
case solving Ax = b is equivalent to a minimization problem:

min
x∈Rn

1

2
xT Ax − bTx. (9.5.6)

Exercise 9.5.2 Show that for positive definite matrices A these formulations are equiva-
lent. Use the same type of argument as in Chapter 5. �

Starting from x0 = 0, r0 = b we now seek s1, s2, . . . , sk, with sj ∈ Kj(A; b) and

solve the minimization problem in the Krylov subspace Kk

min
x∈Kk

1

2
xT Ax − bTx. (9.5.7)

Exercise 9.5.3 Let Aξ = b, in other words ξ is the solution to the linear system. Show
that Problem 9.5.7 is equivalent to

min
x∈Kk

1

2
(x − ξ)T A(x − ξ). (9.5.8)
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�

Exercise 9.5.4 Let Aξ = b, in other words ξ is the solution to the linear system. Show
that Problem 9.5.7 is equivalent to

min
x∈Kk

1

2
rT A−1r, (9.5.9)

in which r = b − Ax. �

So in a way we do the best we can, but you may ask yourself the question if this is
really an easier problem than the original one.

Let us write xk = ∑
k−1
j=0 αjsj. Let us solve minimization Problem 9.5.7. This is just

Ritz’s method, so what we get is a k × k set of equations of the form

k−1

∑
j=0

σmjαj = βm, m = 0, 1, . . . , k − 1, (9.5.10)

in which

σmj = (sm, Asj), (9.5.11a)

βm = (sm, b), (9.5.11b)

or in matrix vector notation Σα = β.

Exercise 9.5.5 Explain that Equations (9.5.11) are an analogue for Galerkin’s method. �

Exercise 9.5.6 Prove that rk is orthogonal to span s0, s2, ..., sk−1, hence orthogonal to
Kk(A; b). �

The remark could be made that this is not much of an iterative method. That is
right, so far it is not. But we have some freedom left in the choice of sj which will
make it one. If you consider Equation (9.5.10) you will see, that in every new step
all αj will change, unless you make the matrix Σ diagonal. In that case the addi-
tion of a new dimension to the Krylov subspace will not touch already calculated
αj’s . And that makes it a truly iterative method. So we have to make sure that
(sk, Asj) = 0, k �= j.

9.5.4 CG algorithm

We summarize all this in the following algorithm:
Conjugate Gradient Algorithm (CG)

Require: A positive definite
1: Presets: x0 = 0, r0 = b, s0 = r0, k = 0
2: while ‖rk‖ > ε‖b‖ do
3: αk = (rk, rk)/(sk, Ask) {See Exercise 9.5.8}
4: xk+1 = xk + αksk

5: rk+1 = rk − αk Ask

6: βk = (rk+1, rk+1)/(rk, rk)
7: sk+1 = rk+1 + βksk

8: k = k + 1
9: end while
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The algorithm generates residual vectors rk in subsequent Krylov spaces and
they are mutually orthogonal. This follows in fact from Galerkin’s condition (see
Exercise 9.5.6). Moreover, the search directions sk are mutually A−orthogonal en-
suring the diagonality of the Galerkin matrix Σ. The positive definiteness of A
guarantees that the algorithm will not crash: the denominator of αk cannot vanish.

The proof of these claims is the subject of the subsequent exercises.

Exercise 9.5.7 Show from lines 5 and 7, that if rk, sk ∈ Km(A; b) then rk+1, sk+1 ∈
Km+1(A; b), independent of the values of αk and βk. Infer by induction that rk, sk ∈
Kk+1(A; b) for all k.

Explain that if

Kk+1(A; b) ⊂ span {s0, s1, . . . , sk}, (9.5.12)

then

Kk+2(A; b) ⊂ span {s0, s1, . . . , sk+1} if αk �= 0. (9.5.13)

(Hint: it is sufficient to show that Ak+1b ∈ span {s0, s1, . . . , sk+1}. Use lines 5 and 7 of
the algorithm.) �

Exercise 9.5.8 Assume

(rk, v) = 0, ∀v ∈ Kk(A; b) (Galerkin’s condition) (9.5.14)

and

(sk, Av) = 0, ∀v ∈ Kk(A; b) (diagonality condition). (9.5.15)

1. Show that by line 5 of the algorithm (rk+1, v) = 0, ∀v ∈ Kk(A; b) independent
of αk. Infer from this and the previous exercise, that to satisfy Galerkin’s condition
for Kk+1 it is sufficient to ensure that (rk+1, rk) = 0. Show that line 3 of the
algorithm does just that. Use line 7 and the diagonality condition.

2. Show that by line 7 of the algorithm (sk+1, Av) = 0, ∀v ∈ Kk independent of βk.
Use the diagonality condition and the fact that if v ∈ Kk then Av ∈ Kk+1. Infer
from this and the previous exercise that to satisfy the diagonality condition for Kk+1

it is sufficient to ensure that (sk+1, Ask) = 0. Show that line 6 of the algorithm does
just that. Use lines 5 and 3.

�

Exercise 9.5.9 From Equation (9.5.11) you would expect

αk = (sk, b)/(sk, Ask) (9.5.16)

on line 3. Show that

(sk, b) = (sk, rk). (9.5.17)

(Use the diagonality condition). Next show that

(sk, rk) = (rk, rk). (9.5.18)

(Use line 7 of the algorithm) �

Exercise 9.5.10 Various inner products in the CG algorithm are used multiple times. It
is a waste to calculate them each time anew. The same is true for the matrix vector product
Ask. Reformulate the algorithm in such a way that each iteration only needs two inner
products and one matrix vector multiplication. �
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9.5.5 Preconditioning

In practice CG is always used with a preconditioner P, but we have to be careful.
It is not a good idea to apply the algorithm to the preconditioned system P−1Ax =
P−1b, because in general P−1A will no longer be symmetric even if P is. If we have
a factorization of P:

P = LLT , (9.5.19)

we can construct a symmetric preconditioned system as follows:

L−1 AL−1T
y = L−1b. (9.5.20)

This has various drawbacks, most notably, that the preconditioner must be avail-
able in factored form and that the solution must be backtransformed later on.
There is a better way to go about this. We have defined CG with respect to the
classical inner product (x, y) = ∑ xkyk but in fact every positive definite matrix B
generates an inner product (x, y)B = (x, By).

Exercise 9.5.11 Show that (., .)B is a proper inner product. �

Exercise 9.5.12 Show that with P and A symmetric positive definite
(P−1Ax, y)P = (x, P−1Ay)P. �

Using this inner product we may formulate the preconditioned CG algorithm:

Require: A, P positive definite
1: Presets: x0 = 0, r0 = b, t0 = s0 = P−1r0, k = 0
2: while (rk, tk) > ε2(r0, t0) do
3: αk = (rk, tk)/(sk, Ask)
4: xk+1 = xk + αksk

5: rk+1 = rk − αk Ask

6: Solve Ptk+1 = rk+1

7: βk = (rk+1, tk+1)/(rk, tk)
8: sk+1 = tk+1 + βksk

9: k = k + 1
10: end while

The algorithm uses ordinary inner products, but careful analysis will show that it
is in fact CG applied to P−1Ax = P−1b, with the (., .)P inner product.

Exercise 9.5.13 Show that minimizing (ε, P−1Aε)P is the same as minimizing (ε, Aε).
�

Exercise 9.5.14 Show that the preconditioned CG as described above minimizes over the
Krylov space Kk(P−1A; P−1b). �

Exercise 9.5.15 (Symmetric Gauss Seidel preconditioner) Let A = D − L − LT be posi-
tive definite, with D diagonal and L lower triangular. Show that P = (D − L)D−1(D −
LT) is positive definite and symmetric.Show that Pt = r can be solved in three easy steps,
of which the first is: solve (D − L)y = r. �

Exercise 9.5.16 Show that the symmetric Gauss Seidel preconditioner generates a regular
splitting if A is an M-matrix. �

Exercise 9.5.17 Do Exercise 9.5.10 for the preconditioned CG algorithm. �
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9.5.6 Convergence

In theory CG is a finite algorithm (why?) but that is not the reason for its useful-
ness. Also as an iteration process it has very good properties. In order to under-
stand that we take a closer look at approximations in the Krylov space. Elements
of the Krylov space Kk+1(A; b) can be written as

y =
k

∑
j=0

aj A
jb = Qk(A)b, (9.5.21)

in which Qk is a kth degree polynomial. In CG approximations a0 = 1 hence
Q(0) = 1 and in fact, the ith iteration can be written as

ε i = Qi(A)ε0, (9.5.22)

in which ε i = x − xi is the error in the ith iteration step. Since (see Exercise 9.5.3)
CG minimizes (ε i, Aε i), or equivalently (ε i, ε i)A. Apparently the expression

(Qi(A)ε0, Qi(A)ε0)A (9.5.23)

is minimized over all possible polynomials Qi of degree i with Qi(0) = 1. Let
us call this optimal polynomial Pi. Let λ1, λ2, . . . , λN be the eigenvalues of A in
increasing order, with corresponding eigenvectors v1, v2, . . . , vN . We have:

b =
N

∑
j=1

bjvj, (9.5.24)

ri = Pi(A)r0 =
N

∑
j=1

Pi(λj)bjvj, (9.5.25)

ε i = A−1ri =
N

∑
j=1

Pi(λj)/λjbjvj, (9.5.26)

(ε i, ε i)A =
N

∑
j=1

P2
i (λj)/λjb

2
j . (9.5.27)

By comparing Pi with specific polynomials we may obtain an error estimate.

(ε i, ε i)A =
N

∑
j=1

P2
i (λj)/λjb

2
j ≤

N

∑
j=1

Q2
i (λj)/λjb

2
j , (9.5.28)

≤ max
λj

Q2
i (λj)

N

∑
j=1

b2
j /λj = max

λj

Q2
i (λj)(ε0, ε0)A. (9.5.29)

Qi is an arbitrary polynomial with Qi(0) = 1.

Exercise 9.5.18 If A has an eigenvalue with multiplicity N − 1 then CG needs two itera-
tions to find the exact solution. Explain why. �

Exercise 9.5.19 Explain why it is a good thing to have clusters of eigenvalues and a bad
thing to have the eigenvalues evenly spread out over the spectrum. �

We now derive a famous upperbound for the error in the ‖.‖A norm by using
scaled, shifted and mirrored Chebyshev polynomials. Chebyshev polynomials
Tn(x) are connected to cos(nφ). You can expand cos(nφ) into an n-th degree poly-
nomial in cos φ. See exercise 9.5.20
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Exercise 9.5.20 Show that cos nφ satisfies the following recurrence relation:

cos(n + 1)φ = 2 cos φ cos nφ − cos(n − 1)φ, n ≥ 2. (9.5.30)

Infer from this and cos 0 = 1, that cos nφ is a polynomial in cos φ �

Tn(x) is now obtained by substituting cos φ = x into that polynomial. That ex-
plains its behavior for −1 ≤ x ≤ 1: |Tn(x)| ≤ 1, −1 ≤ x ≤ 1. And for values
outside that interval? The general solution for the recurrence relation:

Tn+1 = 2xTn − Tn−1, T0 = 1, T1 = x, (9.5.31)

is given by

Tn(x) =
1

2
((x +

√
x2 − 1)n + (x +

√
x2 − 1)−n). (9.5.32)

Exercise 9.5.21 Show that the general solution un of the recurrence relation

un+1 = 2xun − un−1 (9.5.33)

satisfies un = Aρn
1 + Bρn

2 with A and B arbitrary and ρ1 and ρ2 the solutions of the

quadratic equation ρ2 − 2xρ + 1 = 0. Calculate from this the expression in Equation
(9.5.32).
Clearly this expression is valid for x ≥ 1. Is it also valid for x < 1? �

We now cleverly take as our comparison polynomial:

Qi(λ) =
Ti(

2λ−(λ1+λN)
λ1−λN

)

Ti(− λ1+λN
λ1−λN

)
, (9.5.34)

in which λ1 is the minimum and λN the maximum eigenvalue of A. Observe,
that we have scaled in such a way that Qi(0) = 1. Let us introduce the condition
number K = λN/λ1 and the quantity B = (K + 1)/(K − 1). By inequality (9.5.29)
we have

(ε i, ε i)A ≤ max
λj

Q2
i (λj)(ε0, ε0)A, (9.5.35)

≤ 1

T2
i (B)

(ε0, ε0)A, (9.5.36)

≤ 2

(B +
√

B2 − 1)i
(ε0, ε0)A, (9.5.37)

≤ 2(B −
√

B2 − 1)i(ε0, ε0)A, (9.5.38)

≤ 2

(√
K − 1√
K + 1

)i

(ε0, ε0)A. (9.5.39)

This famous error estimate is on the pessimistic side, because as the process contin-
ues the effective condition number will get gradually smaller, because the extremal
eigenvalues of the spectrum will have been sufficiently well approximated by the
polynomial Pi. Compared to the standard iteration methods CG performs at least
as well as SOAR, but is applicable to more general matrices. In fact if we use a
preconditioner like Incomplete LU (See section 9.5.8.2) CG will outperform SOAR
by a considerable margin.
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9.5.7 Krylov space methods for non symmetric matrices.

9.5.7.1 Bi-CG and CGS

The Bi-CG method can be viewed ([41], pg 98) as an application of the precondi-
tioned CG method on the problem(

0 A
AT 0

)(
x̂
x

)
=

(
b

b̂

)
, (9.5.40)

with preconditioner P =
(

0 I
I 0

)
. b̂ must be some suitably chosen vector. The big

problem with that is, that neither the system matrix B =
(

0 A
AT 0

)
nor the precondi-

tioner P is positive definite, so the inner product (., .)P is not a proper inner product
and the algorithm may break down.

The CGS method tries to improve the convergence speed of Bi-CG by a clever trick
on the matrix polynomials Pi(A). For a derivation we refer once more to [41]. If
both algorithms converge, CGS converges about twice as fast for the same oper-
ation count per iteration. CGS unfortunately has a rather irregular convergence
behavior.

9.5.7.2 BiCG-stab

BiCG-stab stabilizes the convergence behavior of CGS and maintains the improved
convergence of this method. For the derivation of this method, which is well be-
yond the scope of this book see [41]. We shall just present the algorithm.

BiCG-Stab without preconditioning

Presets: x0, r0 = b − Ax0, r̃ �= 0, k = 0, β0 = 0, p0 = 0, ω0 = 1, v0 = 0.
ρ0 = (r̃, r0)
while not converged do

if ρk = 0 or ωk = 0 then
Break {Failure}

end if
pk+1 = rk + βk(pk − ωkvk)
vk+1 = Apk+1

αk+1 = ρk/(r̃, vk+1)
s = rk − αk+1vk+1

t = As
ωk+1 = (t, s)/(t, t)
xk+1 = xk + αk+1pk+1 + ωk+1s
rk+1 = s − ωk+1t
ρk+1 = (r̃, rk+1)
βk+1 = (ρk+1/ρk)(αk+1/ωk+1)
k = k + 1

end while

9.5.8 Preconditioners

The success of CG and BiCG-stab largely depends on the application of precondi-
tioners. The easy preconditioners are based on Jacobi and Gauss-Seidel, but the
most powerful preconditioners are incomplete factorizations.



188 Numerical methods in scientific computing

9.5.8.1 Jacob and Gauss-Seidel

Let A be given by D − L − U in which D is diagonal, L is lower triangular and U
is upper triangular. Now the Jacob preconditioner is just given by P = D. In this
particular case it is also possible (provided A is symmetric and positive definite)
to do simple CG on a modified system:

TATy = Tb, x = Ty, (9.5.41)

with T =
√

D−1 = diag(d
− 1

2
kk ).

The Jacob-preconditioner is useful when diagonal elements of A differ by several
orders of magnitude. If all diagonal elements are roughly the same size this pre-
conditioner has very little effect.

A simple Gauss-Seidel preconditioner is given by P = D − L. A factorized varia-
tion, based on symmetric GS to use with simple CG is given by

(D − L)−1SAS(D − LT)−1y = (D − L)−1Sb, (9.5.42)

with S =
√

D.

9.5.8.2 Incomplete LU factorization

An LU factorization (see previous chapter) of a large sparse matrix A can be pro-
hibitively expensive because of the fill in, but a very powerful preconditioner can
be constructed by making an approximate factorization that uses the sparsity struc-
ture of the matrix A or allows a very limited fill in only. It works like this. First of
all we define a set of matrix coefficients that we are going to use in our incomplete
factorization. Usually this set includes all coefficients of A that are non zero. In
any case all diagonal elements of A must belong to this set. The complement of
this set the neglected set is denoted by S . Now an incomplete factorization follows
the same procedure as a normal decomposition (see Section 9.1.2), with some im-
portant exceptions. The matrix A0 we start the decomposition with has zeros for
indices in the neglected set and otherwise is equal to A. In actual practice this often
will not make any difference, because usually we will choose the neglected set in
such a way that A0 = A. Now consider the equations for the update (9.1.8). In

incomplete decompositions we leave a
(i)
jk unchanged if either (j, k) ∈ S , (j, i) ∈ S

or (i, k) ∈ S . In other words, all coefficients in the update equation must belong to
the complement of the neglected set, otherwise there is no update.

Exercise 9.5.22 Show that in incomplete decomposition

1. �ij = 0, if (i, j) ∈ S,

2. ui,j = 0, if (i, j) ∈ S.

�

The first question is under which circumstances such factorizations are useful. It
turns out that for M-matrices A an incomplete factorization will create a regular
splitting. This will guarantee the convergence of CG or BiCG-stab using a precon-
ditioner like that (why?).

We first show, that if A is an M matrix, both factors L and U in the LU-factorization
will be M-matrices too. We shall show this in steps. Consider the first step in the
LU factorization of A:

A(1) = L(1)A, (9.5.43)
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with L(1) lower triangular, with ones on the diagonal and the multiplicators

mj1 = −aj1/a11, j = 2, . . . , N

in the first column. Observe that L(1) is nonnegative.

Theorem 9.5.1 If A is an M-matrix, so is A(1).

Proof.
The elements of A(1) are given by a

(1)
jk = ajk +mj1a1k, j = 2, . . . , N and the first row

is unchanged. Apparently all off-diagonal elements of A(1) remain non-positive,

since mj1 is nonnegative and a1k is nonpositive for k > 1. So A(1) is still a Z-matrix.

To show that A(1)−1
is nonnegative we consider the solution of

A(1)x(k) = ek, (9.5.44)

where ek is the k-th unit vector hence x(k) is just the k-th column of the updated
inverse. For k = 1 we have that

A(1)x(1) = e1 (9.5.45)

has solution x(1)T = (1/a11, 0, . . . , 0), which is clearly nonnegative. For all other ek

the solution of
A(1)x(k) = ek (9.5.46)

is the same as that of
Ax(k) = ek, (9.5.47)

since the right hand side is unaffected by the Gauss step. �

Exercise 9.5.23 Show from the proof above, that extending an M-matrix on the left with
a zero column and at the top with a row with positive diagonal element and nonpositive
off-diagonal generates another M-matrix. Infer from this result, that at each state of the

Gaussian elimination the intermediate A(k) is an M-matrix if A is an M-matrix. �

Making a diagonal element larger or an off diagonal element less negative leaves the
M-property untouched, as may be readily shown.

Exercise 9.5.24 Let A = (ajk) be an M-matrix. Let b11 = a11 + α with α > 0, and

bjk = ajk otherwise. Show that B = (bjk) is also an M-matrix. �

Exercise 9.5.25 Let A = (ajk) be an M-matrix. Let b12 = a12 + α with 0 ≤ α ≤ |a12|,
and bjk = ajk otherwise. Show that B = (bjk) is also an M-matrix. �

This important property gives us the possibility to ignore fill-in in the elimination
process, while the intermediate matrix is still an M-matrix.

Exercise 9.5.26 Show that L(k)−1
is obtained by multiplying all off diagonal elements of

Lk by -1. Show that L(k)−1
is an M-matrix. �

After N − 1 steps of Gaussian elimination we have:

U = L(N−1)L(N−2) . . . L(1)A, (9.5.48)

from which we see, that L−1 = L(N−1)L(N−2) . . . L(1) in the decomposition A =
LU.
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Exercise 9.5.27 Show that if A is an M-matrix both U and L are M-matrices. Show that
this remains true if part of the fill in is neglected. �

Let us formalize this result in a theorem. We denote the index set of neglected fill
in by S . S cannot include diagonal elements.

Theorem 9.5.2 Let A be an M-matrix. There exists for every index set S a lower trian-
gular L̃ with unit diagonal. upper triangular Ũ and remainder N such that

1. �kj = 0, ukj = 0 if (k, j) ∈ S ,

2. nkj = 0 if (k, j) �∈ S ,

such that A = L̃Ũ − N. The factors Ũ and L̃ are completely determined by S . L̃ and Ũ
are both M-matrices hence P = L̃Ũ has nonnegative inverse. Since N ≥ 0 the splitting is
regular and generates a convergent iteration process.

A common strategy for choosing S is to take for the LU decomposition the same
sparsity pattern as A has:

S = {(k, j)| ak,j = 0}. (9.5.49)

Exercise 9.5.28 Show that S = {(k, j) | k �= j} leads to the Jacob preconditioner. �

We conclude this section with an algorithmic description of the incomplete LU
factorization.
ILU algorithm

Require: A is M-matrix
Presets: S set of neglected updates
for k = 1..N − 1 do

for j = k + 1..N do
if (j, k) �∈ S then
�jk = ajk/akk {Store the multiplicator in L}
for m = k + 1..N do

if (j, m) �∈ S and (k, m) �∈ S then
ajm = ajm − �jkakm

end if
end for{m}

end if
end for{j}

end for{k}
Apart from the two tests whether the update should be performed at all, the

ILU algorithm is the same as a normal LU decomposition algorithm.

9.6 The multigrid algorithm

The multigrid algorithm (MG) has become one of the most successful iterative
techniques in the past 30 years. Its main strength is, that the operation count in-
creases linearly with the number of unknowns N or in other words that the number
of iterations is independent of the stepsize. Its main weakness is, that it usually
needs a lot of fine-tuning before this is realized in practice. We can only give the
briefest of introductions into this very interesting subject. For further information
we refer the reader to [48], [18] and [40].
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9.6.1 A one-dimensional example

Although MG is never applied to one-dimensional problems, the ideas behind it
can perfectly well be illustrated with a one-dimensional example. We consider the
one-dimensional boundary problem on the interval (0, 1):

−d2u

dx2
= f , u(0) = 0, u(1) = 0. (9.6.1)

We discretize this on a grid of N = 2p + 1 points to obtain a familiar set of equa-
tions:

2u1 − u2 = h2 f1 (9.6.2a)

−u1 + 2u2 + u3 = h2 f2 (9.6.2b)

...
...

− uk−1 + 2uk − uk+1 = h2 fk (9.6.2c)

...
...

−uN−3 + 2uN−2 − uN−1 = h2 fN−2 (9.6.2d)

−uN−2 + 2uN−1 = h2 fN−1 (9.6.2e)

or Au = h2f in which A is an (N − 1)× (N − 1) tridiagonal matrix with 2’s on the
diagonal and −1’s on subdiagonal and super diagonal. The eigenvalues and eigen
vectors of such a matrix can be calculated exactly.

Theorem 9.6.1 Let the (N − 1)× (N − 1) matrix A be defined as above, The eigenvalues
λk are given by

λk = 4 sin2 kπ

2N
, k = 1, 2, . . . , N − 1, (9.6.3)

and the components vkj of the corresponding eigenvectors vk by

vkj =

√
2

N
sin

kjπ

N
. (9.6.4)

Proof

Consider the three term recurrence relation

−uj−1 + (2 − λ)uj − uj+1 = 0, u0 = 0, uN = 0. (9.6.5)

From the theory of linear recurrence relations we know, that the general solution
is of the form uk = aρk

1 + bρk
2, where ρ1,2 are the solutions of the quadratic:

−ρ2 + (2 − λ)ρ − 1 = 0. (9.6.6)

Because A is symmetric, the eigenvalues are real and from Gershgorin’s theorem
they should lie in the interval (0, 4). Therefore the discriminant of Equation (9.6.6)
is negative and the roots are conjugate complex. Since ρ1ρ2 = 1 (why?) we set
ρ1 = eiφ and ρ2 = e−iφ. This substituted in Equation (9.6.6) gives

2 − λ = eiφ + e−iφ,

λ = 2 − 2 cos φ,

= 4 sin2 1

2
φ.

(9.6.7)
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Figure 9.8: Eigenvalues ’o’ and 10-th powers of eigenvalues ’+’.

The general solution therefore is uj = aeijφ + be−ijφ and since u0 = 0 we get a = −b

or uj = c sin jφ. Because uN = 0, sin Nφ = 0 or φ =
kπ

N
.

c =
√

2/N follows from a normalization argument. See Exercise 9.6.1. �

Exercise 9.6.1 Show that
N

∑
j=1

sin2 jkπ

N
=

1

2
N. (9.6.8)

(Hint: write sin φ = (eiφ − e−iφ)/(2i).) �

Exercise 9.6.2 Show that

N−1

∑
j=1

sin
jkπ

N
sin

j�π

N
= 0, if k �= �. (9.6.9)

�

Exercise 9.6.3 Show that for large N the smallest eigenvalue of A

λ1 ≈ π2

N2
= π2h2 (9.6.10)

�

9.6.2 Smooth and rough part of the spectrum

For this example let us look at a classic iteration process called damped Jacob. The
preconditioner is given by P = α−1D, α < 1 and the iteration process by

ck = D−1rk (9.6.11a)

xk+1 = xk + αck (9.6.11b)

rk+1 = rk − αAck (9.6.11c)

The eigenvalues μk of the iterationmatrix M = I − P−1A are given by μk = 1 −
1
2 αλk in which λk the eigenvalues of A. They have been pictured in Figure 9.8.

In the same figure the eigenvalues to the power 10 have been plotted. This
is what remains of the components of the error after 10 iterations. As you can
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see, all components have disappeared except for those belonging to the smallest
eigenvalues λk of the matrix A corresponding to those closest to 1 in the iteration
matrix M. These eigenvalues are called the smooth part of the spectrum and the
eigenvalues that are damped out the rough part for reasons that become clear when
you look at Figure 9.9.
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Figure 9.9: Smooth (v1,2,3) and rough (v15,16) eigenvectors.

The contribution to the error belonging to the rough part of the spectrum is annihi-
lated very soon by the preconditioner that for that reason is called a smoother. The
contribution belonging to the smooth part, however, is not annihilated at all and is
the reason the classic iteration process converges so slowly.

9.6.3 Two grid algorithm

The central idea of the MG algorithm is to obtain the smooth parts of the solution
in a different way, notably from a solution to a related problem on a coarser grid.
Suppose we somehow had the solution in the even numbered points (x0, x2, .., x16),
(u0, u2, ...u16). We could obtained an initial estimate by linear interpolation: u0

2k+1 =

(u2k + u2k+2)/2. Since the error in this estimate is 0 in the even points and has the
same sign in the odd points as the second derivative it looks something like Figure
9.10.

Apparently this error has a large component in the rough part of the spectrum,
exactly where our smoother is most effective. This is the central idea of the two
grid algorithm. We define a coarse grid GH : x0, x2, x4, x2k . . . xN and a fine grid Gh :
x0, x1, . . . , xN. Our original problem Ahuh = fh lives on the fine grid. On the coarse
grid we can calculate the solution to a related problem AHuH = fH .

Apparently there must be a mapping from fine grid to coarse grid RHhfh = fH .
This mapping is called the restriction in MG speak. And the interpolation operator
to get from uH to uh is called the prolongation PhHuH = uh. The prolongation
operator is easy in this case. It is the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 . . . . . . . . . . . .
1 0 . . . . . . . . . . . .
1
2

1
2 . . . . . . . . . . . .

0 1 0 . . . . . . . . .
. . . . . . . . . 0 1 0

. . . . . . . . . . . . 1
2

1
2

. . . . . . . . . . . . 0 1

. . . . . . . . . . . . 0 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9.6.12)
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Figure 9.10: Typical error by interpolation.

Since we basically try to solve a set of equations in a space of reduced dimension
an obvious strategy is to apply the Galerkin method, in other words take R = PT .
Other choices are possible too, and come down to Petrov Galerkin.

Exercise 9.6.4 Show, that AH = PT
hH AhPhH is a tridiagonal matrix with 1’s on the di-

agonal and − 1
2 ’s on the sub and super diagonal. Show that fH,k = 1

2 fh,2k−1 + fh,2k +
1
2 fh,2k+1. �

We present the two grid algorithm in algorithmic form:
Two grid algorithm

1: Presets: u0
h, r0

h = fh − Au0
h

2: u
prs
h = S(u0

h, b, A, n0){Presmoothing}
3: rH = RHhrh

4: Solve AHcH = rH

5: u
cgc
h = u

p
h + PhHcH {Coarse Grid Correction}

6: u
pos
h = S(u

cgc
h , b, A, n1){Postsmoothing}

So the two grid algorithm consist of a pre-smoothing stage, a coarse grid correction
and a post-smoothing stage. The notation S(u0

h, b, A, n) means: do n steps with the

preferred smoother, with initial estimate u0
h, right hand side b and matrix A.

To get an impression how effective the two grid algorithm is, we look at the con-
tributions of the rough and smooth spectra to the original error and the error after
coarse grid correction. Only odd modes are shown, because the even modes hap-
pen to vanish in this specific example ( f (x) = 1). See Table 9.11. As you can see,

smooth rough
mode 1 3 5 7 9 11 13 15

initial ×10−4 2580 96 21 7 3 2 1 0

after corr ×10−4 25 9 6 5 5 6 9 25

Figure 9.11: Error reduction by coarse grid correction.

the coarse grid correction action is complementary to that of the smoother. The
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contribution of the smooth part of the spectrum is reduced very rapidly, whereas
the rough part is increased. Presmoothing is not very efficient in this particular
case, since the contribution of the rough component to the initial error is almost
negligible.

Exercise 9.6.5 Explain why we use damped Jacob as smoother and not original vintage
Jacob. (Hint: consider Figure 9.7) �

9.6.4 From two grid to multigrid

The Multigrid algorithm consists of applying the two grid algorithm recursively to
step 4. To solve the coarse grid problem AHcH = rH , we define an even coarser
grid
x0, x4, x8, x12, x16, and because we run out of fonts in which to print H to express
the fact that this is an even coarser grid it is maybe a good idea to let the notation
reflect the coarsening level. Let our finest grid be coarsening level 0 and let each
application coarsening increase the level by 1. So in level 0 we have 2p + 1 points,
in level 1 2p−1 + 1 points, in level k 2p−k + 1 points. We denote the matrix and
vectors on level � with A� and v� respectively. R� and P� operate from this level
to the next higher and lower levels respectively. If we have three points left in our
grid we must stop, because we only have one unknown left. The other two are
boundaries. Hence we should stop at level p − 1 or earlier. At level p − 1 we can
solve the problem Ap−1cp−1 = rp−1 directly. This gives us the following algorithm:
MGRecursive (A�, r�, c�, �)

if � < p − 1 then
c� = S(0, r�, A�, n0){Presmoothing}
r�+1 = R�(r� − A�c�) {Calculate coarse grid residual}
A�+1 = R�A�P�+1 {Calculate coarse grid matrix}
call MGRecursive (A�+1, r�+1, c�+1, �+ 1)
c� = c� + P�+1c�+1 {Coarse grid correction}
c� = S(c�, r�, A�, n1) {Postsmoothing}

else
Solve Ap−1cp−1 = rp−1{Direct solution on coarsest level}

end if

For clearness of presentation the calculation of the coarse grid matrix has been
put into the algorithm. This is definitely not a good idea in practice, because the
algorithm will be used several times and these coarse grid operators do not change.
It is a better idea, to do a preliminary stage in which the restriction, prolongation
and matrix on all levels are calculated and stored.

The analysis of the multigrid algorithm is far more involved than that of the two
grid algorithm, but the analysis remains qualitatively valid.

Exercise 9.6.6 Explain, that if n0 = 0 (no presmoothing), the right hand side on the
coarsest level is given by

rp−1 = Rp−2Rp−3 . . . R1R0r0. (9.6.13)

Exercise 9.6.7 Calculate the right hand side on the coarsest grid for p = 3 and f (x) = 1.
(No presmoothing). Calculate the matrix on the coarsest grid for the model problem.

9.6.5 Convergence of the two grid algorithm

For ease of presentation we consider the two grid algorithm with post smoothing
only. It consists of two steps, the coarse grid correction and the postsmoothing. We
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will first study the effect coarse grid correction. Let us call the coarse grid space
ΣH and the fine grid space Σh. The example matrix A is positive definite so the
problem to solve in Σh is:

min
ch∈Σh

1

2
(ch, Ach)− (ch, r) (9.6.14)

but instead we solved:

min
cH∈ΣH

1

2
(PhHcH , APhHcH)− (PhHcH , r) (9.6.15)

and after that put c̃h = PhHcH . So we approximated the solution on a subspace
but on that subspace we obtained the best possible solution in the sense that it
minimizes the quadratic form (9.6.15). In particular, if ĉH is the exact solution in
the coarse grid points you would still have, from Equation (9.6.15) that

1

2
(c̃, Ac̃)− (c̃, r) ≤ 1

2
(PhH ĉH , APhH ĉH)− (PhH ĉH , r). (9.6.16)

And since r = Aĉ this transforms, after adding 1
2 (ĉ, Aĉ) to both sides into

1

2
(c̃ − ĉ, A(c̃ − ĉ)) ≤ 1

2
(PhH ĉ − ĉ, APhH(ĉ − ĉ)). (9.6.17)

Hence

‖c̃ − ĉ‖A ≤ ‖PhH ĉ − ĉ‖A. (9.6.18)

This very interesting result (analogous to the Finite Element error estimate) tells
us, that the error after the coarse grid correction is no worse than the error in linear
interpolation of the exact solution measured in the ‖.‖A norm.

Let us have a look at the residual after coarse grid correction:

r̃ = r − AhPhH A−1
H RHhr, (9.6.19)

= (I − AhPhH A−1
H RHh)r = Qr. (9.6.20)

Exercise 9.6.8 Show that Range(Q) = Ke(RHh). Infer from this that repeated coarse
grid corrections are useless without intermediate smoothing. �

Finally we shall look in detail to the reduction of the various modes in the spec-
trum. We shall show that the smooth part of the spectrum is reduced by the coarse
grid correction by a fixed amount, independent of the stepsize h. We already know
that the rough part of the spectrum is reduced by a fixed amount, irrespective of
the stepsize. Together we conclude that one twogrid iteration reduces the error
by a fixed amount, irrespective of the stepsize. This means that we need only a
fixed number of iterations to get to a certain accuracy and that the total number of
operations is only dependent on the number of operations per iteration.

The analysis we are about to perform is made easy by the fact, that the smooth part
of the eigenvectors of the coarse grid corrector Q and the damped Jacob smoother
S are the same: vkj = sin jkπ/N. Usually this is not the case and this makes
convergence analysis a lot harder. For a more general treatment of convergence
properties of the multigrid algorithm we refer the reader to [48], [18] and [40].

We perform the analysis in several steps in a number of exercises.
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Exercise 9.6.9 Let Ah be an Nh − 1 × Nh − 1 matrix, Nh = 2p+1, with diagonal 2Nh

and sub and superdiagonals −Nh. Show that AH is an NH − 1 × NH − 1 matrix with
NH = 2p with diagonal 2NH and sub and super diagonals −NH.

Calculate the eigenvalues of AH and Ah using Theorem 9.6.1. Calculate the eigenvectors
too. �

Exercise 9.6.10 Show that the smooth part of the eigenvectors of Ah (i.e. k < NH) is
completely represented in the eigenvectors of AH, if you realize that vHk contain only the
even vectorcomponents of vhk. For instance vh1 has components sin jπ/Nh and the even
components of that vector just make up vH1 with components sin jπ/NH = sin 2jπ/Nh.
�

The rough part of the eigenvectors of Ah (i.e. k ≥ NH) is not easily represented
by eigenvectors with kH = kh mod NH . For instance vhNH+1 has components
sin((NH + 1)jπ/Nh) and the even components of that vector just make up

sin((NH + 1)2jπ/Nh) = sin((NH + 1)jπ/NH),

= sin(jπ + jπ/NH),

= (−1)j sin jπ/NH .

(9.6.21)

Exercise 9.6.11 Show that for eigenvectors vhk of Ah belonging to the smooth spectrum

RHhvhk = (1 + coskπ/Nh)vHk. (9.6.22)

�

Exercise 9.6.12 Show, that for eigenvectors vHk of AH:

PhHvHk = vhk + rough part, (9.6.23)

in which the rough part has even components 0 and odd components

vk,2j−1 = (1 − cos kπ/Nh) sin k(2j − 1)π/Nh (9.6.24)

�

From Exercises 9.6.9, 9.6.10 9.6.11 and 9.6.12, we conclude, that Qvhk with k be-
longing to the smooth part of the spectrum has a smooth spectrum component
of:

Qvhk =

(
1 − (1 + cos kπ/N)

λhk

λHk

)
vhk (9.6.25)

Now λhk = 4Nhsin2kπ/(2Nh) and λHk = 4NHsin2kπ/(2NH) and after short ma-
nipulation:

2(1 + cosφ)
sin2 φ/2

sin2 φ
= 2(2− 2sin2φ/2)

sin2 φ/2

sin2 φ

=
4 cos2 φ/2 sin2 φ/2

sin2φ

= 1

(9.6.26)

in other words, the smooth part of the spectrum is completely annihilated by the
coarse grid correction. That is not entirely true, by the way, because there is some
crossover between rough and smooth components.
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9.6.6 Restriction and prolongation in two dimensions

The one-dimensional example is in a way special, because many aspects of the al-
gorithm can be calculated exactly. Nevertheless, the main components of the algo-
rithm remain true in more dimensions. The only thing that needs special attention
are the restriction and prolongation operators. A straightforward generalization to
2 and 3 dimensions would be bi- or trilinear interpolation and that would fit the
bill just fine, but for a small problem.

Let us assume we are working on a rectangular region with 2p cells in x-direction
and 2q cells in y-direction. We define the bilinear restrictions and prolongations as
follows: P = PxPy in which Px is the one-dimensional prolongation operator in x-
direction applied to each single row of the region and Py is is the one-dimensional
prolongation operator in y-direction applied to each single column.

Exercise 9.6.13 Express Px and Py in matrix form. Show that Px and Py commute. �

We take again R = PT. However, if you calculate the coarse grid operator AH from
a fine grid operator Ah coming from the five point Laplace molecule, you will see,
that the foot print increases from a five point to a nine point molecule. Fortunately,
on going to even coarser grids the foot print does not increase.

Exercise 9.6.14 Show this. Show also that in 3 dimensions the foot print increases from a
7-point molecule to a 27-point molecule. �

9.6.7 Concluding remarks about MG

There is a vast amount of literature on the subject of MG algorithms. [48] and
[18] are classics that are recently reprinted, [40] is recent. All contain pointers to
publications that may be of further interest.

A couple of remarks is in order:

1. Damped Jacob is a good smoother, but not the only one. Gauss Seidel is also
good and the incomplete LU factorizations are very good.

2. The use of powers of 2 as number of cells is widely spread, but not really
necessary. The algorithm has been successfully applied for any number of
grid points.

3. There are other variations that we have not treated in this short exposition.
Most notably other interpolation strategies (cell centered versus vertex cen-
tered) and recursion strategies (F-, V- and W cycles) have not been covered.
We only have shown a simple vertex centered V-cycle.

4. One multigrid cycle is really a preconditioner that can be used with defect-
correction or Bi-CGStab. (It is hard to use with CG because of the symmetry
requirement). The latter choice is by far the best.

5. There are still unsolved problems with MG in unstructured grids or rapidly
changing coefficients. Also applications to 3D problems have still some un-
chartered waters.

9.7 Non-linear equations

The discretization of non-linear PDEs leads to non-linear algebraic equations. Al-
though many methods to solve non-linear algebraic system are available in the
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mathematical literature, we will only treat two classical iterative processes: Picard
iteration and Newton iteration. These two methods usually respectively exhibit lin-
ear and quadratic convergence.

9.7.1 Picard iteration

First we consider a class of problems that are small perturbations of linear prob-
lems. For instance

−div grad u + f (u) = 0, on Ω, (9.7.1)

and u = 0 on Γ. If you discretize this the standard way, you end up with a set of
equations of the form

Au + f(u) = 0, (9.7.2)

in which fk(u) = f (uk). To approximate the solution of the above equation, we
generate an array un with the goal that un → u as n → ∞. The estimates un are
obtained by solving a linear system of equations. Since we are only able to solve
linear problems as Au = b, a natural way to go about this is to start out with an
initial estimate u0 and solve the following iteratively:

Aun+1 = −f(un). (9.7.3)

Such an iterative process is known as Picard iteration.

Exercise 9.7.1 Show that if u is the solution of (9.7.2) and εn = u−un, with un solution
of (9.7.3) that

Aεn+1 = D(u)εn +O(‖εn‖2), (9.7.4)

in which D is a diagonal matrix with dkk(u) = − f ′(uk). Show that this process cannot
converge if at least one eigenvalue of A−1D is larger than 1 in absolute value. �

An other example concerns the case of an elliptic equation in which the coefficients
depend on the solution u. Let us consider the following equation

−div (D(u)grad u) = f (x). (9.7.5)

If D(u) is not a constant, for instance D(u) = u, then the above equation is nonlin-
ear. To solve the above equation, we generate a sequence of approximations un as
in the previous example. Here the above equation is solved by iterating

−div
(

D(un)grad un+1
)
= f (x). (9.7.6)

After construction of an appropriate discretization, a linear system to obtain un+1

has to be solved. In general if one wants to solve a nonlinear problem using Pi-
card’s method, convergence is not always guaranteed. One needs to use common-
sense to solve the problem.

So a natural way to obtain an iterative process to a non-linear set of equations
f(x) = 0 is to reform it to a fixed point form x = G(x) with the same solution. On
this fixed point form you graft an iterative process:

xk+1 = G(xk) (9.7.7)

There is a famous convergence result due to Banach on such processes.

Theorem 9.7.1 Let D be a closed subset of Rn and let G be a mapping Rn → Rn such
that



200 Numerical methods in scientific computing

1. if x ∈ D then G(x) ∈ D
2. ‖G(x)− G(y)‖ ≤ α‖x − y‖ for all x, y,∈ D, α < 1

then D contains precisely one fixed point of G.

Proof
Choose x0 ∈ D. By elementary induction it will be clear, that the whole sequence
generated by xk+1 = Gxk is in D. Apparently ‖xk+1 − xk‖ = ‖G(xk)− G(xk−1)‖ ≤
α‖xk − xk−1‖... ≤ αk‖x1 − x0‖. Hence the sequence converges to a limit which lies
in D because D is closed.

There cannot be two different fixed points ξ and η. If there were, ‖G(ξ)− G(η)‖ ≤
α‖ξ − η‖, which is clearly impossible, since G(ξ) = ξ and G(η) = η. �

A mapping that satisfies the conditions of Theorem 9.7.1 is called a contraction or a
contractive mapping.

Exercise 9.7.2 Let xk+1 = G(xk) be an iterative process with limit ξ. G has continuous
partial derivatives in a neighborhood D of ξ and ‖G′(x))‖ < 1, x ∈ D. G′ is the matrix
with

g′kj =
∂gk

∂xj
. (9.7.8)

Show that D contains a subset on which G is a contraction. �

9.7.2 Newton’s method in more dimensions

In order to find a faster converging solution process to the set of non linear equa-
tions

f(x) = 0, f : R
n → R

n, x ∈ R
n (9.7.9)

we try to find an analogue to Newton’s method for functions of one variable:

xk+1 = xk − f (xk)

f ′(xk)
. (9.7.10)

In the neighborhood of the root ξ we have by Taylors theorem:

0 = f (ξ) = f (x) + (ξ − x) f ′(x) + O((ξ − x)2), (9.7.11)

for functions of one variable. We arrive at Newton’s formula by neglecting the
second order term. We try something similar in n dimensions. In the neighborhood
of the root ξ we have:

0 = f1(ξ) = f1(x) +
n

∑
j=1

(ξ j − xj)
∂ f1

∂xj
(x) +O(‖ξ − x‖2), (9.7.12a)

0 = f2(ξ) = f2(x) +
n

∑
j=1

(ξ j − xj)
∂ f2

∂xj
(x) +O(‖ξ − x‖2), (9.7.12b)

...

0 = fn(ξ) = fn(x) +
n

∑
j=1

(ξ j − xj)
∂ fn

∂xj
(x) +O(‖ξ − x‖2). (9.7.12c)
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Neglecting the second order term Equations (9.7.12) we arrive at an iteration pro-
cess that is analogous to (9.7.10):

f1(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ f1

∂xj
(xk) = 0, (9.7.13a)

f2(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ f2

∂xj
(xk) = 0, (9.7.13b)

...

fn(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ fn

∂xj
(xk) = 0. (9.7.13c)

We can put this into vector notation:

f ′(xk)(xk+1 − xk) = −f(xk), (9.7.14)

where f ′(x) is the Jacobian matrix

f ′(x) =

⎛⎜⎜⎜⎜⎜⎝
∂ f1
∂x1

∂ f1
∂x2

. . .
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . .
∂ f2
∂xn

...
...

∂ fn

∂x1

∂ fn

∂x2
. . .

∂ fn

∂xn

⎞⎟⎟⎟⎟⎟⎠ (x). (9.7.15)

We now present the algorithmic form.
Newton’s method for multivariate functions

1: Presets: x0 {initial estimate}, r0 = f(x0), k = 0
2: while ‖rk‖ > ε do
3: Solve f ′(xk)ck = −rk

4: xk+1 = xk + ck

5: rk+1 = f(xk+1)
6: k = k + 1
7: end while

The calculation of the Jacobian is often very time consuming and various schemes
have been proposed to improve on that. For the solution of the linear system on
line 3 we can use any type of solver. The structure of the Jacobian often has the
same sparsity pattern as the corresponding linearization of the PDE.

Example 9.7.1 We consider the following differential equation in one spatial dimension,
with boundary conditions:

u(1 − u)
d2u

dx2
+ x = 0, u(0) = u(1) = 0. (9.7.16)

A finite difference discretization, with equidistant grid-spacing h and n unknowns (h =
1/(n + 1)), gives

fi(u) = ui(1 − ui)
ui−1 − 2ui + ui+1

h2
+ xi = 0, for i ∈ {1, . . . , n}. (9.7.17)

Note that for i = 1 and i = n, the boundary conditions are used. This system of n
equations with n unknowns is seen as a system of non-linear equations. Using the Picard
fixed point or Newton method requires an initial guess for the solution. This initial guess
could be chosen by solving the linearized system or by choosing a vector that reflects the
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values at a Dirichlet boundary (if there is any). Let uk represent the solution at the k-th
iterate, then, one way of using the Picard fixed point method is the following:

uk
i (1 − uk

i )
uk+1

i−1 − 2uk+1
i + uk+1

i+1

h2
+ xi = 0, for i ∈ {1, . . . , n}. (9.7.18)

This requires the solution of a system of linear equation at each iterate.
If one prefers to use the Newton method, then, the calculation of the Jacobian matrix is

necessary. Considering the i-th row of the Jacobian matrix, all entries are zero, except the
one on and the ones adjacent to the main diagonal, that is

∂ fi

∂ui−1
(uk) =

uk
i (1 − uk

i )

h2
,

∂ fi

∂ui
(uk) =

2uk
i (1 − uk

i )

h2
+ (1 − 2uk

i )
uk

i−1 − 2uk
i + uk

i+1

h2
,

∂ fi

∂ui+1
(uk) =

uk
i (1 − uk

i )

h2
.

(9.7.19)

The rest of the procedure is straightforward. �

Exercise 9.7.3 Consider the discretization of

−div grad u + eu = 0, (9.7.20)

on the square (0, 1)× (0, 1). Calculate f ′(u). Compare the structure of the Jacobian to the
matrix generated by the discretization of the Laplacian. �

Exercise 9.7.4 Consider the discretization of

div

⎛⎝ grad u√
1 + u2

x + u2
y

⎞⎠ = 0, (9.7.21)

on the square (0, 1)× (0, 1) by finite volume method. What is the sparsity structure of
f ′(x)? �

9.7.3 Starting values

Although Newton’s method converges quadratically in a neighborhood of the
root, convergence is often very sensitive to good initial estimates. These are sug-
gested sometimes by the technical context, but if obtaining an initial estimate ap-
pears to be a problem the following trick, known as homotopy method may be ap-
plied.

Suppose the solution to some other problem, say g(x) = 0 is known (e.g. a lin-
earization of the original). Consider the following set of problems:

(1 − λ)g(x) + λf(x) = 0, λ ∈ (0, 1). (9.7.22)

For λ = 1 we have our original problem, for λ = 0 we have our auxiliary problem.
Now the idea is to proceed in small steps h from λ0 = 0, λ1 = h, λ2 = 2h to
λN = Nh = 1, using Newton’s method as solver and always taking the solution
to the problem with λk as initial estimate to the problem with λk+1. This is an
expensive method but somewhat more robust than simple Newton.
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9.8 Summary of Chapter 9

In this chapter we have studied methods to solve linear and non-linear sets of
equations. Direct methods are important particularly for not too large two dimen-
sional problems. In general an LU-decomposition is used. For a structured grid
a band method is optimal, but for unstructured girds, profile methods, generally
require less memory and computing time.

Renumbering techniques, like Cuthill-McKee reduce the size of the matrix to an
almost optimal one.

Iterative methods become important for large problems, where direct methods
may be too expensive or do not fit into memory. We first looked at defect correc-
tion or standard iteration methods like Jacob, Gauss Seidel and Successive Overrelax-
ation. After that we met Krylov space methods like Conjugate Gradients (CG) and
BiCG-stab. We found that the standard methods could be used as preconditioner.
We also met a more powerful preconditioner incomplete LU factorization.

We learned about the Multigrid algorithm, how its convergence is independent of
the stepsize of the approximation, by using a coarse grid correction to get rid of the
smooth part of the spectrum.

We briefly looked at non linear problems and met simple Picard iteration and a
generalization of Newton’s method to R

n. The homotopy method can be used to find
a starting value if all other inspiration fails.





Chapter 10

The heat- or diffusion equation

Objectives

In this chapter several numerical methods to solve the heat equation are consid-
ered. Since this equation also describes diffusion, the equation is referred to as the
diffusion equation. The equation describes very common processes in physics and
engineering and we would like our numerical models to inherit certain properties
of the physics. The most important aspect - and typical for diffusion equations - is
the property that the solution tends to an equilibrium solution as time proceeds. If
the coefficients in the heat equation and the boundary conditions do not depend
on time, there exists exactly one equilibrium solution, and the solution of the heat
equation tends to this equilibrium solution independent of the initial condition.

10.1 A fundamental inequality

The next theorem states this result more precisely.

Theorem 10.1.1 Let Ω be a bounded domain in R
2, let Δ be given by

Δ = div grad =
∂2

∂x2
+

∂2

∂y2
. (10.1.1)

Let uE(x) be the solution of
Δu + f (x) = 0, (10.1.2)

with boundary conditions

u(x) = g1(x), x ∈ Γ1 (10.1.3)

∂u

∂n
(x) = g2(x), x ∈ Γ2 (10.1.4)

(σu)(x) +
∂u

∂n
(x) = g3(x), x ∈ Γ3 (10.1.5)

Further, let u(x, t) be the solution of the initial value problem

∂u

∂t
= Δu + f (x), (10.1.6)

with initial condition u(x, t0) = u0(x) and boundary conditions (10.1.3)–(10.1.5). Let
R(t) be the quadratic residual, which is

R(t) =
∫
Ω

(u(x, t)− uE(x))
2 dΩ, (10.1.7)
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then, there is a γ > 0 such that

R(t) < R(t0)e
−γ(t−t0), ∀t > t0. (10.1.8)

Proof
Apparently, uE is a solution of (10.1.6) with ∂uE/∂t = 0. The difference v = uE − u
satisfies:

∂v

∂t
= Δv, (10.1.9)

with initial condition v(x, t0) = v0 = uE − u0 and boundary conditions

v(x) = 0, x ∈ Γ1 (10.1.10)

∂v

∂n
(x) = 0, x ∈ Γ2 (10.1.11)

(σv)(x) +
∂v

∂n
(x) = 0, x ∈ Γ3. (10.1.12)

Multiplication of equation (10.1.9) by v and subsequent integration over Ω, gives∫
Ω

v
∂v

∂t
dΩ =

∫
Ω

vΔv dΩ (10.1.13)

∫
Ω

1

2

∂v2

∂t
dΩ = −

∫
Ω

‖grad v‖2 dΩ +
∫
Γ

v
∂v

∂n
dΓ. (10.1.14)

Here the right-hand side follows from Green’s Theorem 1.3.12. We interchange
the order of integration over Ω, differentiate with respect to time and apply the
boundary conditions to get:

1

2

dR

dt
= −

∫
Ω

‖grad v‖2 dΩ −
∫
Γ3

σv2 dΓ. (10.1.15)

According to Poincaré’s Lemma [1], (provided Γ �= Γ2), there exists a γ0 > 0 such
that ∫

Ω

‖grad v‖2 dΩ > γ0

∫
Ω

v2 dΩ = γ0R. (10.1.16)

Letting γ = 2γ0, we obtain:
dR

dt
< −γR, (10.1.17)

hence
dR

dt
+ γR < 0. (10.1.18)

This inequality holds for all t > t0. We multiply this equation by eγt to get

eγt

(
dR

dt
+ γR

)
=

d
(
eγtR

)
dt

< 0. (10.1.19)

After integration from t0 to t this yields

eγtR(t)− eγt0 R(t0) < 0, (10.1.20)

hence
R(t) < e−γ(t−t0)R(t0). (10.1.21)

This proves the theorem. �
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Remarks

1. The quadratic residual tends to zero exponentially, hence the time dependent
solution tends to the equilibrium solution exponentially.

2. If a Neumann-boundary condition is given on the entire boundary, a compat-
ibility condition (which?) has to be satisfied in order that a physical equilib-
rium is possible. For this particular case the conditions of the theorem have
to be adapted. If the compatibility condition condition is not satisfied, the
solution of the time dependent problem is unbounded. Depending on the
sign of the net heat production temperature goes to ±∞.

3. This theorem, proved for the Laplace operator, also holds for the general
elliptic operator

L =
n

∑
α

n

∑
β

∂

∂xα
Kαβ

∂

∂xβ
,

with K positive definite.

4. In a similar way, it is possible to establish analytical stability for this problem,
i.e. one can demonstrate well-posedness in relation to the initial conditions:
Given two solutions u and v with initial conditions u0 and u0 + ε0 respec-
tively, then, for ε(x, t) = (v − u)(x, t), we have⎛⎝∫

Ω

ε2 dΩ

⎞⎠ (t) < e−γ(t−t0)
∫
Ω

ε2
0 dΩ. (10.1.22)

Hence, for this problem, we have absolute (asymptotic) stability, because the
error tends to zero as t → ∞.

�

Exercise 10.1.1 Prove Theorem (10.1.1) for the general elliptic operator

L =
n

∑
α

n

∑
β

∂

∂xα
Kαβ

∂

∂xβ
, K positive definite.

(Hint: For any symmetric matrix K, (x, Kx) ≥ λ0(x, x), x ∈ Rn\{0}, where λ0 repre-
sents the smallest eigenvalue of K.)

�

Exercise 10.1.2 Demonstrate the analytic absolute stability of (10.1.6). �

10.2 Method of lines

A very general method to solve time dependent problems is the method of lines. In
this method we start with the spatial discretization of the problem

∂u

∂t
= Δu + f . (10.2.1)

This spatial discretization can be based on Finite Differences, Finite Volumes or on
Finite Elements. The spatial discretization results in a system of ordinary differen-
tial equations the size of which is determined by the number of parameters used
to approximate u. Formally, this system can be written as

M
duh

dt
= Suh + fh. (10.2.2)
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The quantities with index h represent the discrete approximations of the continu-
ous quantities. Note the matrix M, the mass matrix, in the left-hand side. It is the
identity matrix in Finite Differences, but has different structure in Finite Volumes
or Finite Elements. M represents the scaling of the equations in the discretization.
The matrix S is a (possibly scaled) discrete representation of the elliptic operator L
and for the FEM it is the same as the stiffness matrix of the corresponding elliptic
problem. We illustrate the method with a few examples.

10.2.1 One dimensional examples

In this section we consider the following equation with one space coordinate:

∂u

∂t
=

∂2u

∂x2
+ f (x, t), x ∈ [0, 1], (10.2.3)

with initial condition u(x, t0) = u0(x). We look at two different discretization
methods.

Example 10.2.1 FDM, Dirichlet
We use as boundary conditions: u(0) = u(1) = 0. Similarly as in Chapter 3, the interval
(0, 1) is divided into sub-intervals of size h, such that Nh = 1. The second order derivative
is discretized using the second divided difference in each gridnode. In each gridnode xj,
j = 0 . . . N, there is a uj, which, of course, also depends on time. From the boundary
conditions, it follows that u0 = 0 = uN, hence the remaining unknowns are u1, . . . , uN−1.
After elimination of u0 and uN we obtain the following system of ordinary differential
equations:

duh

dt
= Suh + fh, (10.2.4)

with

S =
1

h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 1 −2 1
0 . . . . . . 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.2.5)

uh =

⎛⎜⎝ u1
...

uN−1

⎞⎟⎠ and fh =

⎛⎜⎝ f1
...

fN−1

⎞⎟⎠ . (10.2.6)

in which uh and fh both depend on t. �

Example 10.2.2 FVM, right-hand boundary point Neumann
We take as boundary conditions u(0) = 0, u′(1) = 0. Further, a non-equidistant grid
is used with N grid nodes, and hi = xi+1 − xi. As a control volume around the node
xi, the interval Vi = (xi − 1/2hi−1, xi + 1/2hi) is used. Subsequently, we integrate the
differential equation over the control volume. This gives:

xi+1/2hi∫
xi−1/2hi−1

∂u

∂t
dx =

xi+1/2hi∫
xi−1/2hi−1

∂2u

∂x2
+ f dx, (10.2.7)
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hence

∂

∂t

xi+1/2hi∫
xi−1/2hi−1

u dx =
∂u

∂x

∣∣∣
xi+1/2h

− ∂u

∂x

∣∣∣
xi−1/2h

+

xi+1/2hi∫
xi−1/2hi−1

f dx. (10.2.8)

For the integrals

xi+1/2hi∫
xi−1/2hi−1

u dx and

xi+1/2hi∫
xi−1/2hi−1

f dx,

the mid-point rule will be used. �

Exercise 10.2.1 Give the mass matrix and stiffness matrix for this problem, so that the
discretization can be written as

M
duh

dt
= Suh + fh. (10.2.9)

�

10.2.2 Two-dimensional example

In this section we consider the following equation in two spatial coordinates:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f (x, t), x ∈ Ω, (10.2.10)

with initial condition u(x, t0) = u0(x).

Example 10.2.3 FEM, Neumann, Robin
Take Ω bounded, ∂u/∂n = 0 on Γ1, ∂u/∂n + σu = 0 on Γ2, with Γ1 ∪ Γ2 = Γ. We
distribute Ω into triangles, multiply (10.2.10) by φk, integrate by parts and obtain:

d

dt

N

∑
i=1

ui

∫
Ω

φiφk dΩ = −
N

∑
i=1

ui

∫
Ω

(grad φi, grad φk) dΩ

+
∫
Γ

φk
∂u

∂n
dΓ +

∫
Ω

f φk dΩ. (10.2.11)

After taking the boundary conditions into account, one obtains:

d

dt

N

∑
i=1

ui

∫
Ω

φiφk dΩ = −
N

∑
i=1

ui

∫
Ω

(grad φi, grad φk) dΩ (10.2.12)

−
N

∑
i=1

ui

∫
Γ2

σφkφi dΓ +
∫
Ω

f φk dΩ.

This gives a system of ordinary differential equations of the form

M
du

dt
= Su + f. (10.2.13)
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with

mki =
∫
Ω

φkφi dΩ, (10.2.14)

ski = −
∫
Ω

(grad φk, grad φi) dΩ −
∫
Γ2

σφkφi dΓ, (10.2.15)

fk =
∫
Ω

f φk dΩ. (10.2.16)

�

We note that if Newton-Cotes integration is applied to the coefficients of the mass
matrix, the mass matrix becomes diagonal. This process is called lumping.

10.3 Consistency of the spatial discretization

In Chapter 3 consistency of a discretization of a differential operator was treated.
For the FVM and FEM discretization of the diffusion equation, it is necessary to
include the scaling of the mass matrix M. This means that consistency of the dis-
cretization implies that M−1Sy tends to Ly as h tends to zero. In practical situations
this can be hard to verify. In order to determine the order of consistency, it suffices
to multiply each equation from a FVM discretization by the area of the control vol-
ume. For a FEM discretization it is cumbersome to determine the order of the con-
sistency of the approximation of the differential operator. However, a conforming
FEM approach is always consistent. Each classical definition is pessimistic about
the order of the accuracy (if one uses the rule of thumb: order of consistency =
accuracy of the numerical solution). Roughly speaking, the accuracy of the nu-
merical solution is O(hp+1) for interpolation polynomials of the order p. For con-
venience this order of the accuracy of the solution is used as the ’definition’ of the
consistency of the solution.

We will demonstrate that the truncation error of the spatial discretization, of
the system ordinary differential equations, causes an error of the same order for
the time dependent PDE. We suppose that the exact solution of the heat equation,
can be substituted into the discrete approximation, to obtain:

M
dy

dt
= Sy + f + ME(t), (10.3.1)

where Ek(t) = O(hp) is the error of the kth equation, which, of course, depends
on t. The generic discretization parameter (for instance the diameter of the largest
element) is denoted by h and p represents the order of the consistency. In the
remaining part of this section, the following properties of S and M will be used:

• M and S are symmetric.

• M is positive definite, S is negative definite (i.e. (x, Sx) < 0, for x �= 0).

• There is a γ0 > 0 such that

(x, Sx)

(x, Mx)
< −γ0. (10.3.2)

Now we will show that the difference between the exact solution of the heat equa-
tion and the solution of the system of ordinary differential equations is bounded
by the error E(t). Since M is a positive matrix the expression ‖x‖M defined by

‖x‖M = (x, Mx)
1
2 is a proper vector norm. We formulate our result in this norm.
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Theorem 10.3.1 The difference ε = y − u between the exact solution of the heat equa-
tion and the solution of the system of ordinary differential equations (10.3.1), satisfies the
following estimate:

‖ε‖M <
1

γ0
sup
t>t0

‖E(t)‖M . (10.3.3)

Proof
The proof is similar to the proof of the fundamental inequality of Theorem 10.1.1.
We subtract the solution of

M
du

dt
= Su + f, (10.3.4)

from (10.3.1), to obtain:

M
dε

dt
= Sε + ME. (10.3.5)

Since y and u have the same initial condition, we have ε(t0) = 0. Taking the inner
product of the above equation with ε we get:

1

2

d(ε, Mε)

dt
= (ε, Sffl) + (ε, ME), or (10.3.6)

‖ε‖M
d‖ε‖M

dt
= (ε, Sε) + (ε, ME). (10.3.7)

With (ε, Sε) < −γ0(ε, Mε) and Schwartz’s inequality (ε, ME) ≤ ‖ε‖M‖E‖M this
transforms into

d‖ε‖M

dt
< −γ0‖ε‖M + ‖E‖M, (10.3.8)

and hence
d

dt

(
eγ0t‖ε‖M

)
< eγ0t‖E‖M. (10.3.9)

We integrate this expression and use ε0 = 0 to obtain

eγ0t‖ε‖M <

t∫
t0

eγ0τ‖E‖M dτ. (10.3.10)

Hence

‖ε‖M <
1

γ0
(1 − e−γ0(t−t0)) sup

t>t0

‖E‖M, (10.3.11)

and the theorem follows. �

Remark
If ỹ = ∑

N
i=1 yiφi, (i.e. the interpolated value using the exact solution), and if ũ

represents the FEM approximation, then∫
Ω

(ỹ − ũ)2 dΩ = (ε, Mε), (10.3.12)

which is straightforward to show. Something similar holds for the FVM approach.

Exercise 10.3.1 Prove inequality (10.3.2).
Hint: Consider

sup
x

(x, Sx)

(x, x)

(x, x)

(x, Mx)
< sup

x

(x, Sx)

(x, x)
sup

y

(y, y)

(y, My)

�
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Exercise 10.3.2 Positive definiteness of M implies that for all α, β and vectors x and y

(αx + βy, M(αx + βy)) = α2‖x‖M
2 + 2αβ(x, My) + β2‖y‖M

2
> 0 (10.3.13)

Use this to prove Schwartz’s inequality. �

Exercise 10.3.3 Prove the fundamental inequality of Theorem 10.1.1 for the solution of

M
du

dt
= Su + f. (10.3.14)

�

10.4 Time integration

The next step we have to take is to integrate in time our system of ordinary dif-
ferential equations, that we obtained by the method of lines. To this end we use
well known methods for numerical integration of initial value problems, like Euler,
improved Euler, Runge-Kutta or the trapezoidal rule.

Example 10.4.1 Application of Euler’s method gives:

M
un+1

Δt
= M

un

Δt
+ Sun + fn, (10.4.1)

in which un+1 and un represent the solutions on tn+1 and tn respectively,
with tn = t0 + nΔt. �

So unless M is diagonal we have to solve a system of equations in each time step
even when we use an explicit integration scheme. In FDM or FVM M is diagonal,
but in FEM M has the complexity of the Laplacian operator. If you nevertheless
really want to use an explicit integration method (there are several reasons why
you would not) you can diagonalize M by a technique known as lumping. See
Exercise 10.4.1. This technique can be used only for linear basis functions. If you
do not lump the mass matrix you have to solve a system with the complexity of
the Laplacian in each time step.

Exercise 10.4.1 Calculate the element mass matrix for linear basis functions

me
ij=

∫
e

λiλj de (10.4.2)

using Newton Cotes’ integration rule. Show that the element mass matrix is diagonal and
explain that the large mass matrix has to be diagonal too. �

Exercise 10.4.2 Formulate the implicit method of Euler (backward) for the system of or-
dinary differential equations as obtained from the method of lines. �

Exercise 10.4.3 Formulate the improved Euler method for this system. �

Example 10.4.2 The method of Crank-Nicholson or the trapezoid rule for our system of
ordinary differential equations is given by:

(
M

Δt
− 1

2
S)un+1 = (

M

Δt
+

1

2
S)un +

1

2

(
fn + fn+1

)
. (10.4.3)

�
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Example 10.4.3 The θ-method for the system of ordinary differential equations is given
by:

(
M

Δt
− θS)un+1 = (

M

Δt
+ (1 − θ)S)un + (1 − θ)fn + θfn+1, (10.4.4)

where θ is a real number in the closed interval between zero and one. Note that θ = 0,
θ = 1 and θ = 1

2 correspond to the Forward, Backward Euler and the Crank-Nicholson
method respectively. �

For the θ-method it can be shown that the global error in the time integration is of

second order if θ = 1
2 and else the order of the error is of first order.

10.5 Stability of the numerical integration

In section 10.1 we demonstrated that the heat equation is absolutely stable with
respect to the initial conditions. This means that if two solutions have different
initial conditions, the difference between these two solutions vanishes as t → ∞.
This property also holds for the system of ordinary differential equations obtained
by the method of lines (see Exercise 10.5.1). We want to make sure that the numer-
ical time integration inherits this property, so that the numerical time integration
is absolutely stable as well. Stability of numerical integration methods in time is
treated more extensively in [7]. We state the most important results. The stability
of the system of ordinary differential equations:

du

dt
= Au + f, (10.5.1)

is determined by the ’error-equation’

dε

dt
= Aε. (10.5.2)

1. The system is absolutely stable if and only if the real part of the eigenvalues
λk of the matrix A is negative, i.e. Re(λk) < 0.

2. Each numerical solution procedure has an amplification matrix G(ΔtA), given
by the numerical solution of (10.5.2):

εn+1 = G(ΔtA)εn. (10.5.3)

If the error equation is scalar (i.e. the system reduces to of one equation only:
ε′ = λε), the matrix reduces to an amplification factor , which is denoted by
C(Δtλ).

3. A numerical solution method is absolutely stable if all eigenvalues μk of
G(ΔtA) have the property |μk| < 1.

4. The eigenvalues μk of G(ΔtA) can be obtained by substitution of the eigen-
values λk of the matrix A into the amplification factor:

μk = C(Δtλk). (10.5.4)

Hence, for stability we need |C(Δtλk)| < 1.
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Exercise 10.5.1 The amplification matrices for forward Euler, improved Euler, backward
Euler, Crank-Nicholson and the θ-method are given by

I + ΔtA,

I + ΔtA +
1

2
(ΔtA)2,

(I − ΔtA)−1,

(I − 1

2
ΔtA)−1(I +

1

2
ΔtA),

(I − θΔtA)−1(I + (1 − θ)ΔtA).

Show this. What are the corresponding amplification factors? �

If the mass matrix is not I we have A = M−1S, hence, in order to investigate the
stability of the numerical time integration, the eigenvalues of M−1S have to be
estimated. We note that the eigenvalues of M−1S are the same as the eigenvalues
of the generalized eigenvalue problem:
Determine λ and x �= 0, such that

Sx = λMx. (10.5.5)

All eigenvalues of the above generalized eigenvalue are real-valued and negative,
since S is negative definite and M is positive definite. (See [36]). For real-valued
eigenvalues, the following criterion for stability holds

Δt <
c

|λmax| , (10.5.6)

with c = 2 for Euler and improved Euler and c = 2.8 for Runge-Kutta (see [7]).
Hence we have to estimate the maximal eigenvalue of the generalized eigenvalue
problem. This is treated in the next section.

10.5.1 Gershgorin’s circle theorem

The most interesting case to consider is that M is diagonal. We may formulate
Gershgorin’s Theorem for this case to estimate the lie of the eigenvalues.

Theorem 10.5.1 (Gershgorin)
Let M be diagonal, then, for all eigenvalues λ of M−1S holds:

|mkkλ − skk| ≤
N

∑
i=1i �=k

|ski|. (10.5.7)

Remark:
Eigenvalues may be complex valued in general and for complex eigenvalues λ =

μ + iν, the absolute value is the modulus: |λ| = √
μ2 + ν2. So the eigenvalues are

located within a circle in the complex plane and that is the reason why the theorem
is also often referred to as Gershgorin’s circle theorem. But for symmetric M and S
the eigenvalues of M−1S are real-valued.

Proof
Let λ be an eigenvalue of the generalized eigenvalue problem with corresponding
eigenvector v, then,

∑
i

spivi = λmppvp, p = 1, . . . , N. (10.5.8)
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Let vk be the component of v with the largest modulus. For this index l we have

λmkk − skk = ∑
i i �=k

ski
vi

vk
, (10.5.9)

and because |vi/vk| ≤ 1, we get

|λmkk − skk| ≤ ∑
i i �=k

|ski|. (10.5.10)

This proves the theorem. �

Example 10.5.1 For the heat equation in one spatial dimension (see example 10.2.1) the
Finite Difference Method gives M = I and hence

|λmax| < 4

h2
. (10.5.11)

From this we obtain a stability criterion for the Forward Euler method:

Δt <
2h2

4
=

1

2
h2. (10.5.12)

Application of a two dimensional Finite Difference Method (see example 10.4.1) with two
spatial coordinates, gives in a similar way:

|λmax| < 4

(Δx)2
+

4

(Δy)2
, (10.5.13)

and a stability criterion of the form

Δt <
β2

2(1 + β2)
(Δx)2, (10.5.14)

in which Δy = βΔx. �

Example 10.5.2 Lumping the mass matrix in Example 10.2.2 gives mii =
1
2 (hi−1 + hi).

Gershgorin’s Theorem results in the following estimate:

|λmax| < sup
i

2

hi−1 + hi

(
2

hi−1
+

2

hi

)
(10.5.15)

= sup
i

4

hi−1hi
, (10.5.16)

and a stability criterion of the form

Δt <
1

2
inf

i
(hi−1hi). (10.5.17)

�

In all the examples the time step has to be smaller than the product of a factor times
the square of the grid spacing. In practical situations, this could imply that the time
step has to be very small. For that reason explicit time integration methods are
not popular for the heat equation. Implicit methods such as the Crank-Nicholson
method or the implicit Euler (backward) method are usually preferred. This always
implies the solution of a problem with the complexity of the Laplacian in each time step.
In one space dimension, this amounts to the solution of a tridiagonal system of
equations in each time step, which is no big deal. Two and more space dimensions
however lead to the same type of problems as the Laplacian. For iterative methods
the solution on the previous time level is of course an excellent starting value.

For regions with simple geometries some special implicit methods for the heat
equation are available. This will be addressed later.
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Exercise 10.5.2 Prove that Euler backward and Crank-Nicholson are absolutely stable for
each value of the step-size Δt if Re(λk) < 0. �

Exercise 10.5.3 Prove that the θ-method is absolutely stable for all time steps if θ ≥ 1
2 .

Derive a condition for stability for the case that θ <
1
2 . �

As an illustration of the stability of the numerical solution to the heat problem we
consider a Finite Element solution in the square Ω = [0, 1]× [0, 1], on which

∂u

∂t
= 0.5Δu. (10.5.18)

We take as initial condition and boundary condition at all the boundaries Γ:

u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω

u(x, y, t) = sin(x) sin(y), (x, y) ∈ Γ.
(10.5.19)

Exercise 10.5.4 Prove that the analytical solution to the above problem is given by:

u(x, y, t) = e−t sin(x) sin(y). (10.5.20)

�

In Figure 10.1 we show the numerical solution to the above problem as computed
by the use of the Forward Euler method with Δt = 0.1. For this case the stability
criterion is violated and hence the solution exhibits unphysical behavior. In Figure
10.2 we show the solution that has been obtained for the same data by the back-
ward Euler method. Now the solution exhibits the expected physical behavior.
The contourlines are nice and smooth and are similar to the ones of the analytical
solution.

Figure 10.1: Contourlines of the numerical solution to the heat equation with
Δt = 0.1 as obtained by the use of the Forward (explicit) Euler method (unstable
solution).

10.5.2 Stability analysis of Von Neumann

As an alternative method to estimate the eigenvalues of the matrix M−1S we present
a method due to the American mathematician John Von Neumann. This method



10. The heat- or diffusion equation 217

Figure 10.2: Contourlines of the numerical solution to the heat equation with Δt =
0.1 as obtained by the use of the Backward (implicit) Euler method.

has gained much popularity. For equations with constant coefficients and equidistant
grids it can be shown that eigenvectors of M−1S can be written as

vk = eiρkh (10.5.21)

in one and
vkl = ei(ρkΔx+σlΔy) (10.5.22)

in two space dimensions. The region must be rectangular in 2 D. The numbers ρ
and σ depend on the type of boundary conditions. In order to estimate an upper
bound for the eigenvalues it is sufficient to substitute these expressions in one
single equation of the generalized eigenvalue problem.

Example 10.5.3 As an example we consider the heat equation with an equidistant grid in
one space dimension

λeiρkh =
1

h2
(eiρ(k−1)h − 2eiρkh + eiρ(k+1)h). (10.5.23)

We divide the left and right-hand sides of this equation by eiρkh and obtain using the rela-
tion 1/2(eiφ + e−iφ) = cos φ:

λ =
2(cos(ρh)− 1)

h2
= −4

sin2 ρh/2

h2
. (10.5.24)

From this we find for the eigenvalues the estimate:

|λ| ≤ 4

h2
(10.5.25)

and the stability criterion

Δt <
1

2
h2, (10.5.26)

for the forward Euler time-integration. �

Remark

1. Von Neumann’s original method also uses time dependence and calculates am-
plification factors directly. Our presentation is more in line with the method of lines.
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2. The domain of computation, in which the Von Neumann analysis is applied,
does not necessarily have to be rectangular. In that case the analysis gives a rough
upper bound for the eigenvalues, which in fact holds for the smallest rectangle
that encloses the domain of computation. The coefficients in the PDE have to be
constant. Furthermore the discretization has to be equidistant, otherwise the anal-
ysis is not valid. If both Gershgorin’s Theorem and the Von Neumann analysis can
be applied, these methods give the same stability criterion. Gershgorin’s Theorem
can also be applied for non-constant coefficients and non-equidistant grids. But
the mass matrix has to be diagonal in that case.

10.6 The accuracy of the time integration

When we use a numerical method for time integration we make an error at each
time step. These errors accumulate in general, and you might ask if this accumula-
tion could be disastrous. From [7] we know that in a bounded time interval (t0, T]
a local truncation error of the order O(hm) gives a global error of the same order.
The forward and backward methods of Euler have m = 1, whereas the improved
Euler method and the method of Crank-Nicholson have m = 2. Absolutely sta-
ble systems like the heat equation have even better properties. If the numerical
integration is stable, the global error is uniformly bounded on the interval (t0, ∞).

Theorem 10.6.1 Let y(t) be the solution of the absolutely stable system

dy

dt
= Ay + f, y(t0) = y0. (10.6.1)

Further, let un be the solution of the numerical method

un+1 = G(ΔtA)un + In(f), u0 = y0, (10.6.2)

where In( f ) represents an approximation of

tn+1∫
tn

fdt, (10.6.3)

so that

1.
y(tn+1) = G(ΔtA)y(tn) + In(f) + (Δt)m+1pn. (10.6.4)

Here ‖pn‖ is uniformly bounded for all n and Δt.

2. limn→∞ G(ΔtA)n → 0, ∀Δt < τ,

then, the following holds
‖y(tn)− un‖ = O((Δt)m). (10.6.5)

In other words: if the local truncation error in time is of order m (after division of
equation (10.6.4) by Δt), the global error is also of order m provided the integration
is stable.

Proof
We define εn = y(tn)− unand subtract Equation (10.6.2) from Equation (10.6.4) to
get:

εn+1 = G(ΔtA)εn + (Δt)m+1pn. (10.6.6)
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Now ε0 = 0 and we shall show by induction that

εn = (Δt)m+1
n−1

∑
k=0

G(ΔtA)n−k−1pk. (10.6.7)

Equation (10.6.7) holds for n = 0. Assume Equation (10.6.7) holds until n. We
obtain

εn+1 = G(ΔtA)εn + (Δt)m+1pn (10.6.8)

= (Δt)m+1G(ΔtA)
n−1

∑
k=0

G(ΔtA)n−k−1pk + (Δt)m+1pn (10.6.9)

= (Δt)m+1
n

∑
k=0

G(ΔtA)n−kpk. (10.6.10)

From this we conclude that (10.6.7) holds for all n. ‖pn‖ is uniformly bounded, so
there exists a vector pmax with ‖pn‖ < ‖pmax‖ for all n. Putting this into (10.6.10)
we obtain

‖εn‖ ≤ (Δt)m+1
n−1

∑
k=0

‖G(ΔtA)n−k−1‖‖pmax‖. (10.6.11)

We use the diagonalization of G(ΔtA):

G(ΔtA) = Q−1MQ, (10.6.12)

where Q is a matrix with the eigenvectors of G(ΔtA) as columns and M is a diag-
onal matrix with the eigenvalues of G(ΔtA). For ‖G(ΔtA)k‖ we have

G(ΔtA)k = Q−1MkQ (10.6.13)

‖G(ΔtA)k‖ ≤ |μk
1| ‖Q−1‖ ‖Q‖. (10.6.14)

μ1 is the eigenvalue of G(ΔtA) with the largest modulus. This gives

‖εn‖ ≤ (Δt)m+1 1 + |μn
1 |

1 − |μ1|
‖Q−1‖ ‖Q‖ ‖pmax‖. (10.6.15)

Since μ1 = C(λ1Δt) = 1 + λ1Δt + O(Δt2), we have 1 − μ1 = λ1Δt + O(Δt2) and
we finally obtain

‖εn‖ ≤ K(Δt)m, (10.6.16)

which proves the theorem. �

10.7 Conclusions for the method of lines

We summarize the results of the methods of lines for the heat/diffusion equation.

• Using the method of lines, the PDE is written as a system of ordinary differ-
ential equations by the spatial discretization of the elliptic operator.

• The global error of the analytic solution of this system of ordinary differential
equations (compared to the solution of the solution of the PDE) is of the same
order as the consistency of the FDM and FVM and an order higher than the
degree of the interpolation polynomials of the FEM.
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• The numerical solution of this system has an additional error due to the nu-
merical time integration. This global error is of the order of KΔtm, if the local
truncation error is of the order O(Δtm) This constant does not depend on
time t and this estimate holds at the entire time interval (t0, ∞).

• Explicit (and some implicit) methods have a stability criterion of the form

Δt < cΔx2 (10.7.1)

and hence these methods are less suitable for the heat equation.

10.8 Special difference methods for the heat equation

The method of lines is a general method, which is applicable to one, two or three
spatial dimensions. At each time step, the implicit methods give a problem to
be solved with the same complexity as the Poisson problem. Therefore, one has
searched for methods that are stable but have a simpler complexity than the Pois-
son problem. We present one example of such a method: The ADI method. This
method can only be used with regular grids with a five-point molecule for the ellip-
tic operator. Unfortunately, the ADI method cannot be used if the elliptic operator
is discretized using a general Finite Element Method. First we sketch the principle
of the ADI method and subsequently a formal description of the ADI method is
given.

10.8.1 The principle of the ADI method

The abbreviation ADI means Alternating Direction Implicit. This is a fairly accurate
description of the working of the method. Suppose that we have to solve the heat
equation on a rectangle with length lx and width ly and we use a discretization
with stepsize Δx and Δy respectively, such that NxΔx = lx and NyΔy = ly. For
convenience we apply Dirichlet boundary conditions at all the boundaries of the
domain of computation, where we set u = 0. For the time integration of tn up to
tn+1 the ADI method uses two steps. The idea is as follows: first we use a half
time step with an intermediate auxiliary quantity u∗. To compute u∗ we use the
implicit Euler time integration method for the derivative with respect to x and the
explicit Euler time integration for the derivative with respect to y. In the next half
time step, we reverse this process. Hence: The first step, a so-called half time step,
computes an auxiliary-quantity u∗

ij according to:

u∗
ij = un

ij+
Δt

2Δx2
(u∗

i+1,j − 2u∗
i,j + u∗

i−1,j)+ (10.8.1)

Δt

2Δy2
(un

i,j+1 − 2un
i,j + un

i,j−1) + Δt f ∗ij ,

i = 1, . . . Nx − 1, j = 1 . . . Ny − 1,

where f ∗ij denotes f (iΔx, jΔy, t0 + (n + 1
2 )Δt). Subsequently un+1 is calculated ac-

cording to:

un+1
ij = u∗

ij+
Δt

2Δx2
(u∗

i+1,j − 2u∗
i,j + u∗

i−1,j)+ (10.8.2)

Δt

2Δy2
(un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1) + Δt f ∗ij ,

i = 1, . . . Nx − 1, j = 1 . . . Ny − 1.
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In Equation (10.8.1) for a fixed index j a tridiagonal system of equations has to be
solved in u∗

j , with

u∗
j =

⎛⎜⎜⎜⎜⎝
u∗

1j

u∗
2j
...

u∗
Nx−1,j

⎞⎟⎟⎟⎟⎠ . (10.8.3)

In total there are Ny − 1 systems like this one to be solved in order to determine all
the values of u∗

j . Similarly, one has to solve in Equation (10.8.2) for a fixed index i

a tridiagonal system of equations in un+1
i , with

un+1
i =

⎛⎜⎜⎜⎜⎝
un+1

i1
un+1

i2
...

un+1
i,Ny−1

⎞⎟⎟⎟⎟⎠ . (10.8.4)

This is exactly in the other direction, which explains the name of the method. In to-
tal we are faced with Nx − 1 of such systems. Hence to integrate the heat equation
from tn up to tn+1 one has to

• solve Ny − 1 tridiagonal systems of size Nx − 1

• solve Nx − 1 tridiagonal systems of size Ny − 1

Exercise 10.8.1 Verify that the amount of computational effort per time step for the ADI
method is proportional to the total number of gridpoints. (Hint: How many operations
does it take to solve a N × N tridiagonal system of equations?) Further, verify that the
direct solution of the problem with the method of lines using for instance the method of
Crank-Nicholson with a profile-method takes a computational effort which is proportional
to (Nx − 1)2(Ny − 1) of (Nx − 1)(Ny − 1)2, depending on the used numbering of the
unknowns. �

Indeed the computational complexity of the ADI method is better than that of the
method of lines. However, the question remains whether this benefit is not at the
expense of the accuracy or the stability of the method. To scrutinize this, a formal
description of the ADI method is presented in the next section.

10.8.2 Formal description of the ADI method

The ADI method can be seen as a special way to integrate the system of ordinary
differential equations

du

dt
= (Ax + Ay)u + f, (10.8.5)

which arises from a PDE using the method of lines. The ADI method of this system
is given by:

u∗ = un +
1

2
Δt(Axu∗ + Ayun + f∗) (10.8.6)

un+1 = u∗ + 1

2
Δt(Axu∗ + Ayun+1 + f∗). (10.8.7)
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From this the intermediate step u∗ can be eliminated:

(I − 1

2
ΔtAx)u

∗ = (I +
1

2
ΔtAy)u

n +
1

2
Δtf∗ (10.8.8)

(I − 1

2
ΔtAy)u

n+1 = (I +
1

2
ΔtAx)u

∗ +
1

2
Δtf∗ (10.8.9)

and from multiplication of the top part of this expression by I + 1
2 ΔtAx and the

bottom part with I − 1
2 ΔtAx and from the fact that these matrices commute, one

obtains:

(I − 1

2
ΔtAx)(I − 1

2
ΔtAy)u

n+1 = (I +
1

2
ΔtAx)(I +

1

2
ΔtAy)u

n + Δtf∗. (10.8.10)

Equation (10.8.10) is the basis of our investigations. First, we make a statement
about the accuracy.

Theorem 10.8.1 Equation (10.8.10) differs from Crank-Nicholson’s method applied in
(10.8.5) by a term of the order of O(Δt3).

Proof
Crank-Nicholson applied on 10.8.5 gives

(I − 1

2
ΔtAx − 1

2
ΔtAy)u

n+1 = (I +
1

2
ΔtAx +

1

2
ΔtAy)u

n +
1

2
Δt(fn + fn+1).

(10.8.11)
Elaboration of 10.8.10 gives:

(I − 1

2
ΔtAx − 1

2
ΔtAy)u

n+1 = (I +
1

2
ΔtAx +

1

2
ΔtAy)u

n+ (10.8.12)

1

4
Δt2 Ax Ay(u

n − un+1) + Δtf∗.

Now the theorem immediately follows by noting that un − un+1 is of order O(Δt)

and that f∗ = 1
2 (f

n + fn+1) + O(Δt2). Hence the ADI method has the same accu-

racy as the method of Crank Nicholson, which is O(Δt2). �

It is hard to investigate the stability of the ADI method theoretically. In practical
situations, it turns out that the ADI method does not require a stringent stability
criterion. In a special case, there is a theoretical justification for the unconditional
stability of the ADI method:

Theorem 10.8.2 If Ax and Ay are commuting matrices (i.e. Ax Ay = Ay Ax), then, the
ADI method is unconditionally stable.

Proof
We have to calculate the eigenvalues of

(I − 1

2
ΔtAy)

−1(I − 1

2
ΔtAx)

−1(I +
1

2
ΔtAx)(I +

1

2
ΔtAy)

but under the conditions of the conditions of the theorem all these matrices com-
mute. Then, the eigenvalues of these matrices are given by the product of the
separate matrices

(I − 1

2
ΔtAx)

−1(I +
1

2
ΔtAx) and (I − 1

2
ΔtAy)

−1(I +
1

2
ΔtAy).

These eigenvalues are

1 + 1
2 Δtλx

1 − 1
2 Δtλx

and
1 + 1

2 Δtλy

1 − 1
2 Δtλy

.

Since λ is real-valued is negative, the moduli of all these eigenvalues are less than
one. �



Special difference methods 223

Exercise 10.8.2 Show that the operators Ax and Ay commute on the problem of the rect-
angle with Dirichlet conditions. �

Extension of the ADI method to three spatial dimensions is not straightforward.
The most straightforward way (three steps, subsequently for the x-,y- and z coor-
dinate) is no longer unconditionally stable. Further, its global error is of the order
O(Δt). There exist adequate ADI methods for three spatial coordinates, see [26].

10.9 Summary of Chapter 10

In this chapter we paid attention to the numerical solution of the heat or diffusion
equation. We have shown, that with one exception this equation has an equilib-
rium solution and that independent of the initial values the transient solution tends
to this equilibrium solution exponentially fast.

We introduced the method of lines for the numerical solution which transforms the
PDE into a set of ODE’s by discretizing first the spatial differential operators. We
estimated the effect of the truncation error of the spatial discretization on the so-
lution of this system of ODE’s. We proved that this effect is uniformly bounded.
Finite Volume and Finite Element methods generate a mass matrix. The mass ma-
trix of the FEM has the same complexity as the Laplacian operator. For that reason
even for explicit time integration methods a system of equations of that complexity
has to be solved in each time step. This is not necessary if the mass matrix is diago-
nal and therefore one often lumps the mass matrix, transforming it into a diagonal
matrix. This procedure is only possible for linear approximation.

We briefly considered the stability of the explicit integration schemes for which
we had to estimate the lie of the eigenvalues of the system matrix. To this end we
could use Gershgorin’s circle theorem or Von Neumann’s stability analysis.

Finally we considered the ADI-method, an unconditionally stable method of consid-
erable less complexity than Crank-Nicolson’s method, but with the same accuracy.





Chapter 11

The wave equation

Objectives

In this chapter we shall look at various methods for the time integration of the
wave equation. This equation is crucial in applications dealing with electromag-
netic radiation, wave propagation, acoustics and seismics (used for oil finding for
instance). Before we do this, a conservation principle for the solution of the wave
equation is derived. The numerical solution should satisfy this principle as well.
Stability in terms of decay and growth of the numerical solution as a function of
time is investigated for several methods. Furthermore, the concepts dispersion and
dissipation will be introduced and an illustration of these concepts will be given.
Finally a procedure to derive the CFL-criterion, a criterion for the numerical solu-
tion to represent the exact solution, will be given by use of the characteristic curves
in the x, t-plane.

11.1 A fundamental equality

Consider the wave equation on a domain Ω

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
=: c2Δu. (11.1.1)

In Equation (11.1.1) no internal energy source term is taken into account. Further,
homogeneous boundary conditions are imposed on the boundaries Γ1, Γ2 and Γ3

of the domain Ω, i.e.

u = 0, (x, y) ∈ Γ1,

∂u

∂n
= 0, (x, y) ∈ Γ2, (11.1.2)

σu +
∂u

∂n
= 0, (x, y) ∈ Γ3.

Hence there is no transport of energy through the boundaries. Therefore the PDE
(11.1.1) with boundary conditions (11.1.2) is homogeneous. As initial conditions,

we have that u and
∂u

∂t
are given at t = 0 at all points in the domain of computation.

Now we will show that the ’energy’ of this equation is preserved in time.

Theorem 11.1.1 The homogeneous wave equation (11.1.1) with homogeneous boundary
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conditions (11.1.2) satisfies the following conservation principle

1

2

∫
Ω

{(
∂u

∂t

)2

+ c2||grad u||2
}

dΩ +
1

2

∫
Γ3

σc2u2dΓ = Constant. (11.1.3)

Proof: We multiply both sides of the equality of Equation (11.1.1) by ∂u
∂t and inte-

grate the results over the domain Ω to obtain

∫
Ω

1

2

∂

∂t

(
∂u

∂t

)2

dΩ =
∫
Ω

c2 ∂u

∂t
Δu dΩ =

∫
Ω

c2 ∂u

∂t
div grad u dΩ. (11.1.4)

Assuming that all derivatives are continuous and using the product rule for differ-
entiation, the integrand of the right-hand side can be written as

div

(
grad (u)

∂u

∂t

)
− grad (u) · grad

(
∂u

∂t

)
. (11.1.5)

This yields

∫
Ω

1

2

∂

∂t

(
∂u

∂t

)2

dΩ =
∫
Ω

c2div

(
grad u

∂u

∂t

)
dΩ −

∫
Ω

c2grad (u) · grad

(
∂u

∂t

)
dΩ.

(11.1.6)
We apply the Divergence Theorem to the first term on the right-hand side and use
the product rule for differentiation on the second term of the right-hand side to get

∫
Ω

1

2

∂

∂t

(
∂u

∂t

)2

dΩ =
∫

Γ1∪Γ2∪Γ3

c2 ∂u

∂n

∂u

∂t
dΓ − 1

2

∫
Ω

c2 ∂

∂t
(grad (u) · grad (u)) dΩ.

(11.1.7)
The boundary integral on the right-hand side vanishes on Γ1 and Γ2 due to the
boundary conditions. Application of the boundary condition on Γ3 then trans-
forms Equation (11.1.7) into

∫
Ω

1

2

∂

∂t

(
∂u

∂t

)2

dΩ = −
∫
Γ3

c2σu
∂u

∂t
dΓ − 1

2

∫
Ω

c2 ∂

∂t
(grad (u) · grad (u)) dΩ.

(11.1.8)
Finally using a standard differentiation property we get

∫
Ω

1

2

∂

∂t

(
∂u

∂t

)2

dΩ = −
∫
Γ3

1

2
c2σ

∂u2

∂t
dΓ − 1

2

∫
Ω

c2 ∂

∂t
(grad (u) · grad (u)) dΩ.

(11.1.9)
Interchanging the differentiation and integration operations in the above expres-
sion and subsequent integration over time t proves the theorem. �

Remarks

1. Consider the wave equation with a source term

∂2u

∂t2
= c2Δu + f (x, t). (11.1.10)

The difference between two solutions of Equation (11.1.10) with the same
source term f and the same boundary conditions satisfies Equation (11.1.3)
and homogeneous boundary conditions (11.1.2).
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2. The first term in Equation (11.1.3) gives the kinetic energy of the vibrating
medium, whereas the second and a third term involve the potential energy.
Therefore, Equation (11.1.3) is commonly referred to as the energy norm.

3. The total amount of energy is entirely defined by the two initial conditions

u(x, y, t0) and
∂u

∂t
(x, y, t0).

4. The difference in this ’energy-norm’, between two solutions with the same
boundary conditions and different initial conditions is constant at all stages.

Exercise 11.1.1 Prove remarks 1 and 4. �

Exercise 11.1.2 The solution of the heat equation in the previous chapter tends to an equi-
librium solution (i.e. a steady-state) as t tends to infinity. Does the solution of the wave
equation tend to a steady state as t tends to infinity? �

From remark 4 it follows that the solution of the wave equation is neutrally stable,
that is an error made in the initial conditions will neither decrease nor increase and
hence it persists. This property must also hold for our numerical methods. Other-
wise the numerical solution would not exhibit the same physical characteristics as
the analytical solution

11.2 The method of lines

In a similar way as we did for parabolic equations we may first discretize only the
spatial part of the wave equation. The difference with the previous chapter is that
we now have to deal with a second order system with respect to time. After the
discretization of Equation (11.1.10), we obtain:

M
d2u

dt2
= c2Su + f, u(t0) = u0,

du

dt
(t0) = v0. (11.2.1)

Here M and S are the mass and stiffness matrices respectively, just like in the pre-
vious chapter. Next, we establish that equation (11.2.1) also conserves the energy
if f = 0.

Theorem 11.2.1 Let f = 0, then

1

2

(
du

dt
, M

du

dt

)
− 1

2
c2(u, Su) = constant. (11.2.2)

Exercise 11.2.1 Prove this theorem. Hint: Use the symmetry of M and S. �

11.2.1 The error in the solution of the system

Application of the method of lines generates a truncation error E in the spatial
discretization. This may be defined by

M
d2y

dt2
= c2Sy + f + ME, (11.2.3)

where y denotes the exact solution to the wave equation. This definition holds for
Finite Difference and Finite Volume methods. For the Finite Element Method, the
order of the truncation error depends on the approximation properties of the basis
functions. Under fairly general assumptions it can be shown that this truncation
error is equal to the truncation error of the polynomial interpolation of the basis
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functions. This truncation error causes an error in the solution of (11.2.1) of the
form Chp, where h denotes a generic discretization parameter (such as the diam-
eter of the largest element used in the discretization) and p represents the order
of consistency (i.e. for Finite Elements it is the order of the polynomial degree
plus one). For the heat equation it was possible to find a constant C, valid for the
entire interval of integration (t0, ∞). For the wave equation this is not possible.
The constant C depends linearly on the length of the integration interval (t0, T). A
complete analysis of the error is beyond the scope of the book., but qualitatively
the phenomenon is explained as follows: An eigenvibration of (11.1.1) is given by
a function of the form of e iλctU(x, y), where U satisfies the homogeneous boundary
conditions (note that the boundary conditions can be of several types). Substitu-
tion into equation (11.1.1) yields

−λ2c2U = c2ΔU. (11.2.4)

This is just the eigenvalue problem for the Laplace operator, which has an infinite
number of solutions in terms of eigenpairs λk and Uk. λk is the eigenfrequency of
the vibration and Uk the eigenfunction. These quantities depend on the domain of
computation Ω. Generally speaking the wavelength of the eigenfunction (i.e. the
number of peaks) decreases as the eigenfrequency increases.

Consider the discrete version of Equation (11.1.1), which is given by system (11.2.1).
We obtain:

−λ2
hc2 MU = c2SU. (11.2.5)

The subscript h indicates that eigenvalues of the discretized problem are consid-
ered. The discretized system only has a finite number of eigenvalues, or put it
differently: the resolution is finite on the discrete grid. The shortest wave that can
be represented on a grid has wave length O(2h). For eigenfunctions that can be
represented well on the grid we have

|λ − λh| = O(hp) and ||U − Uh|| = O(hp). (11.2.6)

Since the eigenfrequencies of numerical and exact solution differ, the difference
between the numerical solution and the exact solution increases as the simulation
proceeds. This results in a phase-shift error. Moreover, this phase-shift error differs
for the different eigenvibrations. This phenomenon is called dispersion. Since each
solution can be written as a linear combination of eigenvibrations, there will be
dispersion in the solution of equation (11.2.1) in relation to the solution of equa-
tion (11.1.1). This dispersion even exists for the eigenfunctions, which are repre-
sented well on the grid (i.e. eigenfunctions with a large wavelength, i.e. a small
frequency). Therefore, the difference between the solution of (11.2.1) and the exact
solution of the wave equation (11.1.1) increases as the interval of the time integra-
tion increases. Since the error is of the form C(T − t0)h

p, one has to use a more
accurate spatial discretization as T increases if the same absolute accuracy is to be
maintained for the final stages of time interval as for the initial stages of the com-
putation process.

As an example, we consider

∂2u

∂t2
=

∂2u

∂x2
, for 0 < x < 1, (11.2.7)

subject to boundary conditions u(0, t) = 0 = u(1, t) and some initial condition.
It can be shown that the eigenvalues and eigenfunctions of the spatial differential
operator with the given boundary conditions are respectively given by

λk = kπ and Uk = sin kπx, k = 1, 2, . . . . (11.2.8)
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Note that −λ2
k are the actual eigenvalues of the spatial differential operator. Once a

finite difference method with an equidistant grid for which h = 1
N (where h repre-

sents the step size) has been used, it follows that the eigenvalues and eigenvectors
of the discretized problem are respectively given by

λhk =
2 sin

(
1
2 kπh

)
h

, and Uk =

⎛⎜⎜⎝
sin kπh

sin 2kπh
. . .

sin (N − 1)kπh

⎞⎟⎟⎠ . (11.2.9)

Note that −λ2
hk are the actual eigenvalues of the discretized problem. Note that the

eigenvectors are exact. It can be demonstrated that |λ1 − λh1| = O(h2) and that

for k = N
2 the phase shift error is already significant. In the following exercise, the

claims that we made in this paragraph are sustained by a motivation.

Exercise 11.2.2 Consider the initial boundary value problem in Equation (11.2.7).

• Verify by substitution that the eigenfunctions and eigenvalues are respectively given
by

Uk = sin kπx and λk = kπ, k = 1, 2, . . . . (11.2.10)

Note that the eigenvalues of the Laplacian operator are given by −λ2
k.

• Use the Finite Difference method to create an equidistant discretization for which

h = 1
N , with h representing the stepsize.

• Verify by substitution that the eigenfunctions and eigenvectors of the discretized
problem are respectively given by

Uk =

⎛⎜⎜⎝
sin kπh
sin 2kπh

. . .
sin (N − 1)kπh

⎞⎟⎟⎠ , and λhk =
2 sin

(
1
2 kπh

)
h

. (11.2.11)

Note that the eigenvectors are exact. Show, further that |λ1 − λh1| = O(h2) and

that for k =
N

2
the phase-shift error is already significant.

�

11.3 Numerical time integration

One possibility to integrate equation (11.2.1) numerically is to write it as a system
of first order differential equations with respect to time:

du

dt
= v,

M
dv

dt
= c2Su + f,

(11.3.1)

with initial conditions u(t0) = u0 and v(t0) = v0. For this system the ordinary
numerical methods for initial value problems can be used.

Example 11.3.1 Forward Euler applied to System (11.3.1), gives

un+1

Δt
=

un

Δt
+ vn,

M
vn+1

Δt
= M

vn

Δt
+ c2Sun + fn.

(11.3.2)
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Exercise 11.3.1 Give the equations for u and v when a Crank-Nicholson time integration
of System (11.3.1) is applied. �

11.4 Stability of the numerical integration

From the conservation of energy of the solutions of both the wave equation and
the discretization based on the method of lines, it follows that asymptotic stability
does not make much sense here. A perturbation of the initial conditions will never
vanish. A fundamental solution of the form u(t) = eλtu, v(t) = eλtv of system
(11.3.1) with f = 0 has a purely imaginary λ as is shown in the next theorem.

Theorem 11.4.1 Consider system (11.3.1) and let λ be an eigenvalue of the generalized
eigenvalue problem

λu = v,
λMv = Su.

(11.4.1)

If M is symmetric positive definite and if S is symmetric negative definite, then, the eigen-
values of the above generalized eigenvalue problem are purely imaginary.

Proof: We substitute the upper equation into the bottom equation, to obtain:

λ2 Mu = Su, (11.4.2)

which is the generalized eigenvalue problem for M and S. Next we show that
the eigenvalues of the above generalized eigenvalue problem are real-valued and
negative.

This amounts to establishing that the eigenvalues of M−1S are negative, real-
valued. Since M is symmetric positive definite, the matrix M−1/2 exists and M−1S
is similar to M1/2M−1SM−1/2 = M−1/2SM−1/2. This matrix is symmetric and
hence all the eigenvalues of M−1S are real-valued (we used the fact that matrices
that are similar have the same eigenvalues). Furthermore, S is symmetric nega-
tive definite, i.e. (Sx, x) < 0 for all x �= 0. Hence for M−1/2SM−1/2, we have
(M−1/2SM−1/2x, x) = (SM−1/2x, M−1/2x) < 0 for all x �= 0. This implies that
the eigenvalues of M−1/2SM−1/2 are negative and from similarity the eigenvalues
of M−1S are negative as well. Combining this fact with the knowledge that the
eigenvalues of M−1S are real-valued, it follows that λ2 is negative and hence the
eigenvalue λ is purely imaginary. This completes the proof. �

With the purely imaginary eigenvalues of the above generalized eigenvalue prob-
lem (11.4.1), it follows that the solution of system (11.3.1) is neutrally stable. An
absolutely stable time integration method decays the error of the solution and also
the solution itself as t → ∞. Whereas an unstable time integration method blows
up the error and the solution. This implies that with neither of these time inte-
gration methods, the wave equation can be integrated numerically up to any large
time t. Hence we have to define an end time T and choose the time step Δt accord-
ingly small. If T = nΔt and limΔt→0 |C(λΔt)|n = 1 for a particular method, then,
the wave equation can be integrated up to this bounded time T. Note that n → ∞

as Δt → 0.

11.5 Total dissipation and dispersion

Since the eigenvalues of (11.4.1) are purely imaginary the solution of (11.3.1) can
be written as a linear combination of products of eigenvectors and undamped vi-
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brations. Hence it is sufficient to consider a single differential equation of the form

dw

dt
= iμw, subject to w(t0) = w0. (11.5.1)

The behavior of this differential equation qualitatively reflects the behavior of the
total system (11.3.1). The exact solution is

w(t) = w0e iμ(t−t0). (11.5.2)

For the solution at tn+1 = t0 + (n + 1)Δt we note that

w(tn+1) = w(tn)e iμΔt. (11.5.3)

Hence the amplification factor of the exact solution is given by

C(iμΔt) = e iμΔt ⇒ |C(iμΔt)| = 1 and arg(C(iμΔt)) = μΔt. (11.5.4)

The argument of the amplification factor, arg(C(iμΔt)), is referred to as the phase
shift. Hence in each time step there is a phase shift in the exact solution, whereas
the modulus of the exact solution does not change.

Exercise 11.5.1 Show that the complex differential equation (11.5.1) is equivalent to the
system

du

dt
= −μv

dv

dt
= μu,

(11.5.5)

where u = Re{w} and v = Im{w}. Show that w(t) = Constant is equivalent to conser-
vation of energy. �

For the numerical method, the following relation holds

wn+1 = C(iμΔt)wn. (11.5.6)

If the modulus of the amplification factor is larger than one, the energy increases
in each time step. This is called amplification. Conversely, if the amplification factor
is smaller than one the energy decreases. This is called dissipation.

Example 11.5.1 The modulus of the amplification factor of Euler’s method is

|C(iμΔt)| =
√

1 + (μΔt)2. (11.5.7)

So the amplification of the method is O(μ2Δt2) accurate.

The phase shift per time step of a numerical method is defined by the argument of
the amplification factor, i.e.

ΔΦ = arg(C(iμΔt)) = arctan

(
Im{C}
Re{C}

)
. (11.5.8)

Example 11.5.2 The phase shift of the improved Euler method is given by

ΔΦ = arctan

(
μΔt

1 − 1
2 (μΔt)2

)
. (11.5.9)
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The phase error or dispersion is the difference between the exact and numerical
phase shifts. This is referred to as dispersion because the phase shifts differ for the
different values of μk in equation (11.3.1).

Exercise 11.5.2 Show that the phase error of the improved Euler method per time step is
O((μΔt)3). �

The total dissipation, Dn(iμΔt), is the product of the dissipations of all the time
steps from t0 up to the end time T. The total dispersion, ΔΦn(iμΔt), is the sum
over the phase errors of all the time steps. Note that we have nΔt = T − t0. The
total dissipation and the total dispersion are measures of the error in the numerical
solution. As Δt → 0 the total dissipation should tend to 1 and the total dispersion
should tend to 0.

Exercise 11.5.3 Why do we need

lim
Δt→0

Dn(iμΔt) = 1? (11.5.10)

�

As an illustration we calculate the total dissipation and total dispersion for the
forward Euler method:

Dn = (C(iμΔt))n = (1 + (μΔt)2)
T−t0
2Δt . (11.5.11)

From a Taylor series of the exponential, we see that

1 ≤ Dn ≤
(

e (μΔt)2
) T−t0

2Δt
. (11.5.12)

Subsequently, from a linearization of the exponential, we get

e (μΔt)2 T−t0
2Δt = 1 + O(μ2Δt). (11.5.13)

So the condition limΔt→0 Dn(iμΔt) = 1 is satisfied. For the total dispersion we
have

ΔΦn(iμΔt) = n(μΔt − ΔΦ) = n(μΔt − arctan(μΔt)) =

n(μΔt − (μΔt + O((μΔt)3))) = nO((μΔt)3)) = O(μ3Δt2).
(11.5.14)

Note that nΔt = T − t0 and that the exact phase shift is μΔt. This has been used
in this expression. It is clear from the expression that the total dispersion tends to
zero as the time step tends to zero. In Figures 11.1 and 11.2 the total dissipation
and dispersion are plotted as a function of the time-step Δt.

This total dispersion and total dissipation can be investigated for other time
integration methods as well. We leave this as an exercise to the reader.

11.6 Direct time integration of the second order sys-

tem

In principle it is not necessary to write equation (11.3.1) as a system of two first
order differential equations. A lot of methods are available to integrate a second
order differential equation of the form

d2y

dt2
= f (y, t) (11.6.1)
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Figure 11.1: Dissipation of the forward Euler method for μ = 1 and T − t0 = 1.

Figure 11.2: Dispersion of the forward Euler method for μ = 1 and T − t0 = 1.
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directly. For a comprehensive survey of numerical methods to solve this system
of second order differential equations, we refer to [23]. In this course we will treat
two example schemes, applied to (11.2.1):

1. Explicitly

Mun+1 − 2Mun + Mun−1 = Δt2
(

c2Sun + fn
)

. (11.6.2)

2. Implicitly

Mun+1−2Mun + Mun−1 =

Δt2

4

(
c2(Sun+1 + 2Sun + Sun−1) + fn+1 + 2fn + fn−1

)
.

(11.6.3)

Both methods are consistent of O(Δt2) in time. These methods are referred to as
three step schemes, which implies that before one starts using these schemes, one
first has to use an other method, such as Euler explicit:

u1 = u0 + Δtv0. (11.6.4)

Using the explicit Euler method for the first step is satisfactory, since its error for
the first step is O(Δt2).

The Equations (11.6.2) and (11.6.3) are special cases of the popular Newmark-(α, β)
scheme. This scheme is usually written in a three-level form based on displace-
ment u, velocity v and acceleration a. It uses a Taylor expansion, where the higher
order terms are averaged.
Newmark reads:

un+1 = un + Δtvn +
Δt2

2
((1 − 2β)an + 2βan+1), (11.6.5)

vn+1 = vn + Δt((1 − γ)an + γan+1), (11.6.6)

Man+1 + c2Sun+1 = fn+1. (11.6.7)

At t = t0 we solve a0 from the equation of motion (11.6.7). In the following steps
we substitute (11.6.5) in (11.6.7) to get an equation for an+1. Finally (11.6.5) and
(11.6.6) are used to compute un+1 and vn+1.
It is possible to rewrite Newmark as a three-step scheme:

(M + βc2Δt2S)un+1 − (2M − (
1

2
+ γ − 2β)c2Δt2S)un+

(M + (
1

2
− γ + β)c2Δt2S)un−1 = Δt2F,

(11.6.8)

with

F = (
1

2
− γ + β)fn−1 + (

1

2
+ γ − 2β)fn + βfn+1. (11.6.9)

Remark
(11.6.7) can not be used to compute a at boundaries with prescribed displacements
at t = t0. Why not? In practice one often takes a = 0 in that case.
An alternative is to use a Taylor series expansion at t = t0 + Δt and to express a0

in u0, v0, and u1 at that boundary.



11. The wave equation 235

Exercise 11.6.1 Prove that (11.6.8), (11.6.9) follows from (11.6.5)-(11.6.7).
Hint: Substitute (11.6.6) in (11.6.5) to eliminate vn, and write the equation for the previ-
ous timestep to get an expression of the form:

un−1 = un − vnΔt +
Δt2

2
((1 − 2(γ − β))an−1 + 2(γ − β)an). (11.6.10)

Add (11.6.5) and (11.6.10) to get an expression for un+1 and an+1.
Then use the equation of motion (11.6.7). �

Exercise 11.6.2 Show that the Newmark scheme reduces to the explicit central difference

scheme ((11.6.2)) if β = 0 and γ = 1
2 . �

Exercise 11.6.3 Show that the Newmark scheme reduces to the implicit central difference

scheme ((11.6.2)) if β = 1
4 and γ = 1

2 . �

Exercise 11.6.4 Show that the three step implicit scheme (11.6.3) is identical to Crank-
Nicholson’s method for (11.3.1). (Hint: write out the steps for n and n + 1 and eliminate
all the v’s.) Note that the first step of the three step method should be taken with Crank-
Nicholson’s method instead of the previously mentioned Euler explicit method. �

11.7 The CFL criterion

From the section about the numerical time integration, it is clear that the time step
plays an important role in the numerical integration. In general the time step Δt
and step size Δx cannot be chosen independently. This was already observed for
Euler’s method. In 1928 Courant, Friedrichs and Lewy formulated a condition for
the time step for the numerical solution to be a representation of the exact solution.
Their condition was obtained by using a physical argument. Commonly one refers
to it as the CFL criterion. Often this CFL condition is used in relation with stability
of a numerical method. Strictly, this is not true since the CFL criterion represents
a condition for convergence. In the following text an intuitive justification of the
CFL criterion will be given. It is possible though to derive the CFL criterion in full
mathematical rigor.

The solution of the wave equation can be represented by a superposition of
linear waves, which all have a velocity c. Consider the solution at any node xi

at time tj, then, within a time interval Δt, this point source influences the solution
within the distance cΔt from position xi. Within a time interval Δt, the solution at
locations with distance larger than cΔt from xi is not influenced by the solution at
xi on tj. Usually this is referred to as the region of influence of u(xi, tj). Vice versa,

u(xi, tj) is determined by the point sources of u(x, tj+1 − τ), with |x − xi| < cτ for
τ < Δt. This region of influence is indicated by the dashed part in Figure 11.3. For
the explicit time integration of the wave equation, the spatial discretization is done
at time tj. For the finite differences solution with one spatial coordinate at xi on tj,
one uses u(xi, tj), u(xi−1, tj) and u(xi+1, tj), i.e.

d2u

dx2

∣∣∣∣
t=tj

=
u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

Δx2
. (11.7.1)

The CFL criterion of an explicit scheme for the wave equation is as follows: The
region of influence of u(x, tj+1) with |x − xi| < cτ for τ < Δt (hence around xi), may not
contain any locations at tj outside the interval of the grid nodes (xi−1, xi, xi+1 here), which
are used for the discretization of the second order partial derivatives of the wave equation.
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Figure 11.3: The solution at xi on tj+1 is determined by u(x,tj+1 − τ) where x ∈ (xj−
cτ,xj + cτ) for τ < Δt. The region of influence is indicated by the grey region. This
situation satisfies the CFL criterion.

The CFL criterion guarantees that the numerical solution is determined only by
all the point sources that physically have an influence on this solution. In the case
of Figure 11.3, it turns out that the region of influence, for τ < Δt, only contains
locations within the interval (xi−1, xi+1) and hence for this Δt the CFL criterion is
satisfied and convergence of the numerical solution is to be expected. Before an
example is treated, the following important aspects should be noted:

Remarks

1. For a three step scheme it is sufficient to check the CFL criterion for the final
two steps. By induction it follows that the criterion is satisfied for all steps.

2. For an implicit scheme the CFL criterion is irrelevant. Since, then, the entire
previous time step determines the solution on the present time step.

An example of the derivation of the CFL criterion is treated:

Example 11.7.1 Consider the explicit time integration of the wave equation in one dimen-
sion with equidistant nodes:

un+1
i − 2un

i + un−1
i =

(
cΔt

Δx

)2

(un
i+1 − 2un

i − un
i−1). (11.7.2)

The region of determination of un+1
i is then given by the interval (xi − cτ, xi + cτ) for

τ < Δt. The nodes for the spatial discretization are xi−1, xi and xi+1. The interval
that is defined by these nodes (hence (xi−1, xi+1)) must contain the region of influence
(xi − cτ, xi + cτ) for τ < Δt. Hence, the CFL criterion for this case is given by xi − cτ >

xi−1 and xi + cτ < xi+1 for τ < Δt. Since the nodes are equidistant and Δx = xi+1 − xi,
this implies the following CFL-criterion:

cΔt

Δx
≤ 1. (11.7.3)
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Figure 11.4: The solution at xi on tj+1 is determined by u(x,tj+1− τ) where x ∈ (xj

− cτ,xj + cτ) for τ < Δt. The region of influence is indicated by the grey region
and some part of the region of influence is outside the interval (xi−1,xi+1). Hence
this situation violates the CFL criterion.

An example of a region of influence for a time step that does not satisfy the CFL criterion
is shown in Figure 11.4.

Exercise 11.7.1 Check that for the wave equation with one spatial coordinate, the Euler
forward method by

un+1
i = un

i + Δtvn
i

vn+1
i = vn

i +
c2Δt

Δx2
(un

i+1 − 2un
i + un

i−1),

(11.7.4)

cannot satisfy the CFL criterion. If the first equation is replaced with

un+1
i = un

i +
Δt

4
(vn

i−1 + 2vn
i + vn

i+1), (11.7.5)

there is a CFL criterion. Give the CFL criterion for this case. �

11.8 Summary of Chapter 11

This chapter has dealt with numerical methods for the solution of the (hyperbolic)
wave equation. The hyperbolic nature of the wave equation is important for the
nature of the numerical solutions. To solve the PDE the method of lines has been
used. It first deals with the spatial derivatives and considers time integration of
the resulting system of ODE’s as a separate problem.

A direct time integration scheme for the second derivative of the time has also
been presented. The numerical amplification factor for the dissipation and the
phase shift of the numerical solution have been defined and analyzed. Finally,
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the derivation of the CFL-criterion, using the concept of the region of influence in
the x, t plane, has been given. This CFL criterion is necessary for the numerical
solution to be a representation of the exact solution.



Chapter 12

The transport equation

Objectives

The transport equation is fundamental in modeling (multi-phase) flow in porous
media, such as underground oil, gas and water reservoirs. Some engineering dis-
ciplines, where the transport equation plays an important role as well, are geo-
sciences, aerospace engineering and naval engineering. The transport equation is
also referred to as a first order hyperbolic conservation law and an important appli-
cation in aerospace engineering involves modeling of air flow around aircraft. The
backbone for understanding the nature of the solutions and boundary conditions
of the transport equation lies in the analysis of the characteristics of the solutions.
Further, some classical numerical methods to solve hyperbolic conservation laws
will be presented. The presentation is given for configurations with one spatial
coordinate only. Finally, some mathematical theory for the transport equation will
be presented. Traveling wave solutions for Burgers equation are analyzed and subse-
quently the nature of the solutions of the Buckley-Leverett equation is discussed.

12.1 Introduction

The transport equation describes transport of one or various components in n di-
mensions. In this chapter we limit ourselves to transport in one spatial dimension.
The most general form of a transport equation in conservative form is:

∂u

∂t
+

∂f(u)

∂x
= g(u, x, t). (12.1.1)

with u = (u1, . . . , um)T denoting the vector with the transported quantities and
f = ( f1, . . . , fm)T the flux-vector. If the vector g does not depend on x and t, then the
problem is called autonomous. In many transport problems the right-hand side in-
volves a chemical reaction, whose rate often only depends on the solution. Hence,
many transport problems are autonomous.

In the literature the transport problem is often referred to as hyperbolic, e.g.
a hyperbolic conservation law. Although the equation certainly does not satisfy
the standards for hyperbolicity as in Chapter 2, this classification does make sense,
since the solutions of Equation (12.1.1) can be represented by waves, just like those
of genuine hyperbolic partial differential equations. This is justified in the follow-
ing exercise:
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Exercise 12.1.1 Show that the transport equation of two components⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
+ c

∂v

∂x
= 0

∂v

∂t
+ c

∂u

∂x
= 0

(12.1.2)

is equivalent to the wave equation
∂2u

∂t2
= c2 ∂2u

∂x2
.

In non-conservative form, Equation (12.1.1) has the following shape:

∂u

∂t
+ A(u)

∂u

∂x
= g, (12.1.3)

with aij =
∂ fi
∂uj

. Hence A is the Jacobian of the flux-vector. For regular transport

A must have real eigenvalues. In the literature 12.1.1 and 12.1.3 are commonly
referred to as hyperbolic if the Jacobian A has real eigenvalues (i.e. regular trans-
port). Imposing initial and boundary conditions for (12.1.1) and (12.1.3) is usually
not trivial. This will be illustrated by use of the characteristics for the transport of
one component.

12.2 Characteristics

Let us consider the equation

∂u

∂t
+ a(u)

∂u

∂x
= g(u), (12.2.1)

which describes transport of one component in non-conservative form. We con-
sider a curve in the (x, t) plane, parameterized by s with the property

dx

ds
= ρ(s)a(u) and

dt

ds
= ρ(s), (12.2.2)

then along this curve we obtain from the total derivative of u with respect to s:

du

ds
=

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
= ρ(s)g(u). (12.2.3)

This means that if the value of u is known at a certain point, i.e. u(x0, t0) = u0,
then, the value over a curve is defined for (x(s), t(s), u(x(s), t(s)), is the solution
of the coupled system of ordinary differential equations:

dx

ds
= ρ(s)a(u),

dt

ds
= ρ(s),

du

ds
= ρ(s)g(u). (12.2.4)

with initial conditions x(0) = x0, t(0) = t0 and u(0) = u0. The (x, t) curve of
Equation (12.2.2) is referred to as a characteristic, the system (12.2.2) is called the
characteristic equation and Equation (12.2.3) is referred to as the characteristic rela-
tion. The Equations (12.2.2) and (12.2.3) give the solution of the partial differential
equation in the form of a system of coupled ordinary differential equations. One
also expresses this property as follows: along the characteristics the PDE changes
into an ODE. Note that if g = 0, then the solution u is constant along a character-
istic and the quantity u is transported along the characteristics. The choice of ρ is
arbitrary, it influences the parameterization and not the solution itself. If g does
not depend on u then the characteristics can be determined by just solving Equa-
tion (12.2.2). However, for cases in which a depends on u, the complete Equation
(12.2.4) must be solved. Then, one obtains the characteristic and the solution at the
same time.
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Figure 12.1: The region of influence of Γ0 at a certain time. This region is indicated
by the dashed line. The arrows indicate the characteristics of the solution.

Exercise 12.2.1 Show that the characteristic equation corresponding to the PDE

∂u

∂t
+ c

∂u

∂x
= 0. (12.2.5)

is given by
dx

ds
= ρc and

dt

ds
= ρ. (12.2.6)

Show that this gives
dx

dt
= c. Hence all lines of the form x − ct = constant are char-

acteristics. Suppose that u is given at t = 0 on the interval (0, 1), show that then the
solution at time t is determined on the interval x ∈ (ct, 1 + ct) and show that it is given
by u(x, t) = u0(x − ct).

We formulate the initial value problem as follows:

Let Γ0 be a curve in the (x, t)-plane, such that each characteristic intersects Γ0 only once.
Let u be given on Γ0. Then, the solution is determined on a strip Σ, which is constructed
by the union of all the characteristics that intersect Γ0. The solution on each characteristic
is determined by the system of ordinary differential equations (12.2.4) with as the initial
condition the values of the solution at Γ0. The situation has been pictured in Figure 12.1.

The strip Σ is called the region of influence of Γ0.

Exercise 12.2.2 Why is a characteristic not allowed to intersect Γ0 twice for a general
initial condition on Γ0? What condition should be satisfied if the characteristic intersects
the curve Γ0 twice?

Exercise 12.2.3 Given the differential equation

∂u

∂t
+

∂u

∂x
= −u, (12.2.7)

with initial condition u(x, 0) = u0(x) on the interval 0 ≤ x ≤ 1.
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1. What is the equation for the characteristics?

2. What is the characteristic relation?

3. What is the region of influence of the interval 0 ≤ x ≤ 1?

Exercise 12.2.4 Given the differential equation

∂u

∂t
+

∂u

∂x
= 1, (12.2.8)

with initial conditions on Γ0 = Γ1 ∪ Γ2 with

1. Γ1 = {(x, t) : t = 0, 0 ≤ x ≤ 1}
Γ2 = {(x, t) : x = 0, 0 ≤ t < ∞}.

2. Γ1 = {(x, t) : t = 0, 0 ≤ x ≤ 1}
Γ2 = {(x, t) : x = 1, 0 ≤ t < ∞}.

In which of these two cases is the problem well-posed for a general initial condition? What
is the region of influence of u?

Exercise 12.2.5 Give for the differential equation

∂u

∂t
+ t

∂u

∂x
= f , (12.2.9)

the region of influence of the start curve: Γ0 = {(x, t) : −1 ≤ t ≤ 1, x = 0}. Are all
choices for u allowed on the curve Γ0?

In case of smooth solutions of u with respect to x and t, it is necessary that two
characteristics, which originate from different locations on Γ0 with different initial
values, do not intersect.

12.3 Some classical numerical procedures

In the past many numerical methods to solve the transport equation were based on
the characteristics of the solution. However, the popularity of these methods de-
creased and therefore they are not treated in this book. These methods were gradu-
ally replaced by the fixed grid methods. In this section first the classical methods of
central and upwind discretization are analyzed. Subsequently, the Lax-Wendroff
scheme for smooth solutions and the use of fluxlimiters for discontinuous solu-
tions are introduced as higher order methods to solve the transport equation.

12.3.1 Central discretization and upwind discretization

We consider again the transport equation

∂u

∂t
+

∂ f (u)

∂x
= 0 ⇐⇒ ∂u

∂t
= −∂ f (u)

∂x
. (12.3.1)

In this text an equidistant distribution of the gridnodes is considered.
We use a Finite Volume Method, hence we integrate over a control volume (see
Figure 12.2), which gives on time-step tj:∫

Ωi

∂u

∂t
(x, tj)dx = −

∫
Ωi

∂ f (u(x, tj))

∂x
dx =

= −
[

f (u(x
i+ 1

2
, tj))− f (u(x

i− 1
2
, tj))

]
.
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Figure 12.2: A gridcell used for the Finite Volume Discretization.

We define f
j

i− 1
2

:= f (u(xi− 1
2
, tj)) and f

j

i+ 1
2

:= f (u(xi+ 1
2
, tj)), as the flux on both

boundaries of the gridcell Ωi at time step jΔt. The flux entering Ωi+1 and the flux
leaving Ωi are balanced with the accumulation in Ωi. The integral on the left-hand
side of the above equation is approximated as follows:

∫
Ωi

∂u

∂t
(x, tj)dx ≈ ∂u

∂t
(xi, tj)Δx ≈ u(xi, tj+1)− u(xi, tj)

Δt
Δx.

Define u
j+1
i = u(xi, tj+1) and u

j
i = u(xi, tj), in this way the following discretization

of (12.3.1) is obtained:

u
j+1
i − u

j
i

Δt
+

f
j

i+ 1
2

− f
j

i− 1
2

Δx
= 0. (12.3.2)

We analyze difference equation (12.3.2). We consider the simple example f (u) = u.
We discretize the above equation by the use of the second order central discretiza-
tion. The fluxes on the boundaries of Ωi are approximated

f
j

i+ 1
2

:= f (u
j

i+ 1
2

) = u
j

i+ 1
2

≈ u
j
i+1 + u

j
i

2
,

f
j

i− 1
2

:= f (u
j

i− 1
2

) = u
j

i− 1
2

≈ u
j
i−1 + u

j
i

2
.

With these approximations, a central discretization results from Equation (12.3.2):

u
j+1
i − u

j
i

Δt
+

u
j
i+1 − u

j
i−1

2Δx
= 0, (12.3.3)

In Chapter 3 it is derived that the truncation error in the spatial discretization is
of second order. It turns out that the above discretization is prone to unphysical
oscillations. For the stationary convection-diffusion equation this is motivated in
Chapter 3. This will be analyzed later in this section by the use of the Von Neu-
mann stability analysis.

Due to this oscillatory behavior it is preferable to use an alternative method. We
derive this discretization method by the use of characteristics. The points (xi−1, tj),
(xi, tj) and (xi, tj+1) in the (x,t)-plane are sketched in Figure 12.3. Over each char-

acteristic the value of u is constant. Since,
dx

dt
= 1, the characteristics are parallel

to the line x = t in the (x,t)-plane. So following the characteristic through (xi, tj+1)
we end up at the point (xi − Δt, tj) at the line t = tj (see Figure 12.3). Hence, we

have u
j+1
i = uj(xi − Δt). Since uj(xi − Δt) is not a value on a node, its value is
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Figure 12.3: Derivation of the first order upwind discretization.

computed by linear interpolation between the values u
j
i−1 and u

j
i , to obtain

uj(xi − Δt) = u
j
i−1

Δt

Δx
+ u

j
i

Δx − Δt

Δx
= u

j
i +

Δt

Δx
(u

j
i−1 − u

j
i). (12.3.4)

Keeping in mind that u
j+1
i = uj(xi − Δt), the above equation is written as

u
j+1
i − u

j
i

Δt
+

u
j
i − u

j
i−1

Δx
= 0. (12.3.5)

The above equation is commonly referred to as the first order upwind discretiza-
tion.

In the coming text the accuracy and stability issues are investigated for these
two discretization for the linear transport equation, where f (u) = u.

The Taylor Series around x = xi and t = tj for u
j+1
i and u

j
i−1 are given by

u
j
i−1 = u

j
i − Δx · ∂u

∂x
+

(Δx)2

2

∂2u

∂x2
+ · · ·,

u
j+1
i = u

j
i + Δt · ∂u

∂t
+

(Δt)2

2

∂2u

∂t2
+ · · · .

Substitution of the above equations into Equation (12.3.5) gives

u
j
i + Δt · ∂u

∂t +
(Δt)2

2
∂2u
∂t2 + · · · − u

j
i

Δt
+

+
u

j
i − u

j
i + Δx · ∂u

∂x − (Δx)2

2
∂2u
∂x2 + · · ·

Δx
= 0.

Then, after neglecting higher order terms one obtains:

∂u

∂t
+

∂u

∂x
=

Δx

2

∂2u

∂x2
− Δt

2

∂2u

∂t2
. (12.3.6)

We remark that
∂u

∂t
= −∂u

∂x
=⇒ ∂2u

∂t2
= − ∂2u

∂t∂x
= − ∂2u

∂x∂t
= − ∂

∂x
(−∂u

∂x
) =

∂2u

∂x2
(pro-

vided the second order partial derivatives are continuous). Substitution into (12.3.6)
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gives the following equation:

∂u

∂t
+

∂u

∂x
=

(
Δx

2
− Δt

2

)
∂2u

∂x2
= D

∂2u

∂x2
, (12.3.7)

with D =
Δx

2
− Δt

2
. This equation is a convection-diffusion equation. From the

above equation it is clear that the discretization error for this upwind discretiza-
tion is first order for the time step and the grid spacing. Therefore, this formula is

referred to as first order upwind. The dispersion term, D
∂2u

∂x2
, is called the numeri-

cal diffusion. We know that the convection-diffusion equation has a stable solution
if and only if D ≥ 0. So stability is guaranteed if

0 ≤ D =
Δx

2
− Δt

2
⇐⇒ Δt

Δx
≤ 1. (12.3.8)

Inequality (12.3.8) is commonly called the CFL-condition after Courant-Friedrichs-
Lewy. The values of Δt and Δx have to satisfy the CFL-condition. Note that if

D = 0 (or
Δt

Δx
= 1), then Equation (12.3.7) reduces to (12.3.1) with f (u) = u. For

this case there is no numerical diffusion. Then, the error consists of higher order
terms only. In most practical situations with variable coefficients or non-linearities,
it is impossible to tune Δt and Δx such that D = 0.

Note that we use an explicit time-integration, which has a time-step restriction for
stability. For an implicit time integration one obtains:

u
j+1
i − u

j
i

Δt
= −u

j+1
i − u

j+1
i−1

Δx
.

Using a similar procedure with Taylor-expansion as for the explicit scheme, one
obtains

∂u

∂t
+

∂u

∂x
=

1

2
(Δt + Δx)

∂2u

∂x2
,

hence D := 1
2 (Δt + Δx) > 0 for all Δt, Δx > 0. Above equation always has a stable

solution, however, errors due to space discretization and time integration do not
tend to cancel each other. Therefore, an implicit time integration method is not
widely used.

12.3.1.1 Von Neumann stability analysis

Next, the issue of stability is treated. In the present section the method of Von
Neumann is used to analyze stability. This method is based on the estimation of
the eigenvalues of the discretization matrix. The procedure can be used for PDE’s
with constant coefficients and equidistant grids only. The method involves the use
of a discrete Fourier series and is formally applicable to rectangular geometries
with periodical boundary conditions. In this section only one spatial co-ordinate
is considered. Let us consider the function û and the domain x ∈ [0, 1], then, a
Fourier series of û is given by

û(x, t) =
∞

∑
α=1

ρα(t)e
−2παxi. (12.3.9)

The functions ρα(t) are referred to as Fourier coefficients. Let N denote the number
of grid nodes. Then, the above relation is written for the function û on the grid, i.e.
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ûn
k = û(kΔx, nΔt):

ûn
k =

N−1

∑
α=1

ρn
αe−2παkΔxi, (12.3.10)

where we define ρn
α = ρα(nΔt). The above relation can represent a Discrete Fourier

Transform of the perturbed solution. For stability we require that ρn
α stays bounded

as n → ∞. Consider the following example

un+1
k − un

k

Δt
+

un
k+1 − un

k−1

2Δx
= 0, (12.3.11)

i.e. a central discretization with Euler forward (explicit) time integration. Then,
substitution of (12.3.10) into (12.3.11) yields

N−1

∑
α=1

(ρn+1
α − ρn

α)e
−2παkΔxi =

Δt

2Δx

N−1

∑
α=1

ρn
α

(
e−2πα(k−1)Δxi − e−2πα(k+1)Δxi

)
.

(12.3.12)
Collecting all terms for a fixed value of α, ρn+1

α and ρn
α , and division by e−2παkΔxi,

gives

ρn+1
α = ρn

α

[
1 +

Δt

2Δx

(
e 2παΔxi − e−2παΔxi

)]
. (12.3.13)

Using sin(θ) =
e θi − e−θi

2i
, gives

ρn+1
α = ρn

α

[
1 + i

Δt

Δx
sin(2παΔx)

]
. (12.3.14)

The ratio
ρn+1

α

ρn
α

represents an amplification factor. A condition for stability is

|ρ
n+1
α

ρn
α

| ≤ 1, (12.3.15)

i.e. the modulus of the ratio between the Fourier coefficients ρn
α at consecutive

time-steps may not be larger than one. Note that the Fourier coefficients are not
real, then, for the central explicit discretization follows

|ρ
n+1
α

ρn
α

|2 = 1 + (
Δt

Δx
)2 sin2(

2πα

N
) > 1, (12.3.16)

and hence the central discretization with Euler-forward time integration is always
unstable, regardless the value of Δt and Δx.

An other example with conditional stability is considered in the following exer-
cise, where an explicit time-integration is considered for an upwind discretization
scheme.

Exercise 12.3.1 Consider the discretization method with Euler forward time integration
and a first order upwind spatial discretization:

un+1
k − un

k

Δt
+

un
k − un

k−1

Δx
= 0. (12.3.17)

Use the Von Neumann stability of this section to show that the above mentioned formula

gives stability if
Δt

Δx
< 1.

Bear in mind that the Fourier coefficients are not real in general.
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Figure 12.4: Derivation of the Lax-Wendroff scheme.

An alternative and more general method for the analysis of stability is the so-called
matrix-method, where the eigenvalues of the discretization matrix, where the time
integration is incorporated, are estimated by use of Gershgorin’s Theorem. This
has been treated in Chapter 10 for the heat equation.

12.3.1.2 The Lax-Wendroff scheme

When solutions are smooth the Lax Wendroff scheme is suitable for hyperbolic
conservation Laws. We present the Lax-Wendroff scheme for the first order linear
advection equation:

∂u

∂t
+

∂u

∂x
= 0. (12.3.18)

To derive the Lax-Wendroff scheme for one spatial coordinate, characteristics are
used. The procedure is similar to the derivation of the first-order upwind method.
Consider the (x,t)-plane as in Figure 12.4, the points (xi−1, tj), (xi, tj), (xi+1, tj) and
(xi, tj+1) are indicated. We consider the characteristic that passes through (xi, tj+1).

Note that the characteristics are straight lines for which
dx

dt
= 1. Since the solution

is constant over the characteristics, we have u
j+1
i = uj(xi − Δt) (see Figure 12.4).

Since xi − Δt generally does not co-coincide with a node, quadratic interpolation

between u
j
i−1, u

j
i and u

j
i+1 is used to approximate the value uj(xi − Δt) (see Figure

12.4). By use of u
j+1
i = uj(xi −Δt), the solution at the new time step is determined.

Let the CFL-number be given by σ, i.e. σ =
Δt

Δx
, then, this procedure gives

u
j+1
i =

σ

2
(σ + 1)u

j
i−1 − (σ2 − 1)u

j
i +

σ

2
(σ − 1)u

j
i+1. (12.3.19)

Exercise 12.3.2 Use quadratic interpolation to approximate uj(xi − Δt) using the values

u
j
i−1, u

j
i and u

j
i+1. Finally, show that Equation (12.3.19) follows.
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This scheme due to Lax-Wendroff is more accurate than the previously treated
first-order upwind and second-order central discretization methods. However,
due to the higher order interpolation, it is suitable for hyperbolic PDE’s with smooth
solutions only. For shock solutions, it has been proved (see Leveque [25]) that spu-
rious oscillations are introduced by this method and hence for these cases the Lax-
Wendroff scheme is not popular. Then, one relies on alternative methods which
are suitable for shock capturing. These schemes are based on flux limiters or slope
limiters.

12.3.1.3 Flux limiters

From the preceding section it is clear that the upwind scheme causes numerical
diffusion as an undesired side effect. The error is of the order of Δx. However,
the solution is physical in the sense that no spurious oscillations are introduced.
In this section we will consider some higher order methods. We point out that
these higher order methods are useful in those parts of the domain of computa-
tion where the solution behaves smoothly. At positions where no smoothness is
attained we will fall back on the first order upwind method. We turn back to the
original first order hyperbolic transport equation with one spatial coordinate

∂u

∂t
+

∂ f (u)

∂x
= 0. (12.3.20)

For the sake of simplicity only equidistant grids for the computational domain are
considered. Application of the Finite Volume method over the volume Ωi around
grid node i and division by Δx gives:∫

Ωi

∂u

∂t
dx = f (ui−1/2)− f (ui+1/2). (12.3.21)

Let wi approximate the mean value of the solution within Ωi, then we get

w
j+1
i − w

j
i

Δt
=

fi−1/2 − fi+1/2

Δx
. (12.3.22)

For most cases one takes u linear or constant between two consecutive gridnodes
and then this average over Ωi equals the value of u at the particular gridnode, i.e.
wi = ui. The first order upwind approximation gives

fi+1/2 = f (wi), fi−1/2 = f (wi−1), (12.3.23)

and a second order central scheme gives

fi+1/2 = f (
wi+1 + wi)

2
) = f (wi + 1/2(wi+1 − wi))

fi−1/2 = f (
wi−1 + wi

2
) = f (wi−1 + 1/2(wi − wi−1))

(12.3.24)

For the first order upwind scheme, it is known that the numerical solution exhibits
no unphysical oscillations. However, it tends to smear out discontinuities due to
numerical diffusion. A higher order scheme, such as Lax-Wendroff’s scheme, is
more accurate but initial conditions with discontinuities can develop into numer-
ical solutions with spurious oscillations. Hence, near shocks one avoids the use
of methods which are prone to unphysical oscillations and one does not insist on
the higher order accuracy of the solution near discontinuities. Therefore, one tries
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1

Figure 12.5: The conditions for ψ to avoid unphysical oscillation. This area is indi-
cated by the grey region.

to combine the advantages of both methods: near discontinuities one uses a first
order upwind discretization and away from a discontinuity, where the solution
is smooth, one uses a higher order method. Van Leer proposes to generalize the
relations of fi+1/2 to

fi+1/2 = f (wi + ψ(ri)(wi+1 − wi)). (12.3.25)

The idea is to let ψ be dependent on the smoothness of the solution and therefore

one uses the ratio ri :=
wi−wi−1
wi+1−wi

, which is defined by the ratio of the subsequent dif-

ferences of values of w over neighboring gridnodes. The function ψ is commonly

called a limiter function. Note that whenever ψ = 1
2 for both fi−1/2 and fi+1/2, then,

a central scheme is recovered. Whereas, if ψ = 0 for both fi−1/2 and fi+1/2, then,
the first order upwind scheme is obtained. Further, if ψ = 1 for both fi−1/2 and
fi+1/2, then, a downwind discretization is used. The limiter function ψ should be
chosen such that first order upwind is obtained near shocks and that the order of
discretization is maximal when the solution is smooth. Further, unphysical oscil-
lations are not allowed. Using the concept of conservation of monotonicity and
the decrease of total variation (see the appendix of this chapter or Leveque [25],
sections 6.7 and 6.12 for the interested reader), one can show that

0 ≤ ψ(ri) ≤ ri

0 ≤ ψ(ri) ≤ 1,
(12.3.26)

provide sufficient conditions to avoid spurious oscillations. This regime is plotted
in Figure 12.5 by the colored area.

To make the function ψ more look like a higher order method, a wide variety
of functions for ψ has been proposed and investigated. Sweby [38] presents a com-
parison of the properties of the various choices for ψ. Not aiming at being complete
we only mention the limiter due to Van Leer [25]

ψ(r) =
r + |r|

2(1 + |r|) , (12.3.27)
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and the ’minmax’ limiter due to Kooren [25]

ψ(r) = max
(

0, min
(

1, 1
3 + 1

6 r, μr
))

,

(Kooren limiter function), μ > 0.
(12.3.28)

One sees immediately that the second limiter function satisfies all the require-
ments. It is shown in following exercise that the first limiter satisfies the desired
properties as well. Therefore, it is commonly used.

Exercise 12.3.3 Show that ψ(r) = 0 for all r ≤ 0, ψ(1) = 1
2 and that limr→∞ ψ(r) = 1

and limr→0+ ψ′(r) = 1. Further show that ψ(r) is monotonic.

Note that when the profile is almost linear, then, r ≈ 1. This implies that almost the
central discretization is used. Further, when there is a shock between xi−1 and xi,
an upwind scheme is obtained. We remark that the situation where both ψ(ri−1) =
1 = ψ(ri) does not occur for one dimensional geometries. This is nice since this
particular case would reflect a downwind discretization. Many other limiters are
specified by the use of if-statements which is at the expense of computation time.
The advantage of these limiters, however, is a slight increase of accuracy.

Figure 12.6: Left the Kooren limiter function (12.3.28) and right the Van Leer limiter
function.

Further, one can use a predictor-corrector method to improve the accuracy of the
solution.

12.4 Mathematical theory for the transport equation

In this section some mathematical background of first order hyperbolic conserva-
tion laws is given. This background is commonly used to check the results ob-
tained from numerical simulations. The present treatment is for a scalar conserva-
tion law. For systems of hyperbolic PDE’s some mathematical theory is presented
in Smoller [33].

Since Burgers equation is the simplest case of a non-linear transport equation,
first traveling wave solutions for Burgers equation are analyzed. Subsequently,
smooth solutions and discontinuous solutions for the Buckley-Leverett with a con-
vex flux function are discussed. Finally, the convexity condition for the Buckley-
Leverett equation is relaxed and the construction of analytical solutions is shown.
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x

u

Figure 12.7: Sketch of a shock solution to Burgers equation with ν → 0 at several
times. The shock moves to the right.

12.4.1 Burgers equation

Burgers equation appears in some models from hydrodynamics and aerodynam-
ics. It derivation follows from the conservation of momentum, i.e. a special case of
momentum equations due to Euler, in one spatial dimension. This equation is the
following:

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0. (12.4.1)

Exercise 12.4.1 Given the above Burgers equation, on the unbounded domain R, subject
to the initial condition

u(x, 0) =

{
1, x < 0,

0, x > 0.
(12.4.2)

Show by use of the characteristics that the solution of this problem develops into a shock
(see Figure 12.7).

One can show that the general hyperbolic conservation Law for smooth f (u) can
be transformed into the above Burgers equation, this also motivates that Burgers
equation is an important model for which some qualitative properties will be de-
rived. We will see that solutions of Burgers equation are discontinuous (see Figure
12.7 with shocks) or continuous (see Figure 12.8), depending on the initial / bound-
ary conditions. First we consider the equation with the incorporation of an extra
diffusive term, which allows us to have smooth solutions of which the derivatives
exist:

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= ν

∂2u

∂x2
, (12.4.3)

where ν > 0 denotes the viscosity. To get some insight into the structure of the
solutions of this equation, we consider the existence of traveling wave solutions of
the above equation, which are given by u(x, t) = f (η) with η = x − st (s is to be
determined). The solutions that we consider in this section are on the unbounded
domain, i.e. x ∈ R and t > 0. Further, we consider bounded solutions with
horizontal asymptotes only, i.e. there exists values uL and uR such that

lim
x→−∞

u(x, t) = uL and lim
x→∞

u(x, t) = uR. (12.4.4)
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x

u

Figure 12.8: Sketch of a continuous solution to Burgers equation with ν → 0 at
several times.

Then Equation (12.4.3) changes into

−s f ′ +
(

1

2
f 2

)′
= ν f ′′. (12.4.5)

After integration of the above equation we obtain

−s f +
1

2
f 2 = ν f ′ + A, (12.4.6)

where A is a constant of integration. The solution f is assumed to be smooth.
Hence, for |η| → ∞ we must have lim|η|→∞ f ′(η) = 0. The numbers s and A are

determined from the use of the boundary conditions and lim|η|→∞ f ′(η) = 0, to
obtain

−suL +
1

2
u2

L = A; (12.4.7)

−suR +
1

2
u2

R = A. (12.4.8)

We solve these equations for s and A to get

s =
1

2
(uR + uL) (12.4.9)

A =
1

2
uRuL. (12.4.10)

Note that s defines the velocity of the traveling wave. Substitution of equation
(12.4.10) into Equation (12.4.6) gives

2ν f ′ = ( f − uR)( f − uL) < 0, (12.4.11)

where the inequality holds for f between uL and uR. Hence, the solution f should
be within the interval between uL and uR otherwise the boundary conditions can-
not be satisfied unless the solution contains a discontinuity. This implies that if
u = u(x, t) satisfies the traveling wave behavior then it is a decreasing function
with respect to x. This also implies that uL ≥ uR only admits traveling wave
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solutions , since uL < uR requires an increasing function, i.e. f ′(η) > 0, which
contradicts Equation (12.4.11). For uL ≥ uR Equation (12.4.11) is solved by the use
of separation of variables to get

f (η) = uR +
uL − uR

1 + exp

(
uL − uR

2ν
η

) , (12.4.12)

hence

u(x, t) = uR +
uL − uR

1 + exp

(
uL − uR

2ν
(x − st)

) , (12.4.13)

with

s =
uL + uR

2
. (12.4.14)

Note that if ν → 0 then the solution tends to a shock behavior:

lim
ν→0

f (η) =

{
uR, for η > 0,

uL, for η < 0.
(12.4.15)

For the case that uR > uL we saw no traveling wave solutions, i.e. u(x, t) = f (η)
with η = x − st, does not exist. However, then a solution of a different structure
exists. This will be analyzed in the presentation of the Buckley-Leverett equation.
The most important conclusions of this section are that the solution of Burgers
equation tends to be discontinuous under uL > uR as ν → 0 and that traveling
wave solutions exists provided uL ≥ uR.

12.4.2 The Buckley-Leverett equation

The Buckley-Leverett equation plays a crucial role in the flow of two phases in
porous media. Its derivation is based on the concept of relative permeabilities. For
a derivation, we refer to the book of Bear [4]. We consider the Buckley-Leverett
equation with (piecewise) smooth solutions, such that the derivatives of the solu-
tions exist. Further, it is assumed that f (u) is a smooth function too. This equation
reads as

∂u

∂t
+

∂ f (u)

∂x
= 0 ⇒ ∂u

∂t
+ f ′(u) ∂u

∂x
= 0. (12.4.16)

We will see that the character of the solution of the above equation depends on the
flux function f (u). Consider a point (x0, t0) in the x, t-plane and the initial value
problem for the characteristics

dx

ds
= f ′(u), dt

ds
= 1, where ρ(s) = 1, (12.4.17)

then we consider characteristics of Equation (12.4.16) in terms of x(t) since

dx

dt
= f ′(u), x(t0) = x0.

At this curve the following holds after combination with Equation (12.4.17)

d

dt
u(x(t), t) =

∂u

∂x
(x(t), t)x′(t) +

∂u

∂t
(x(t), t) =

∂u

∂x
f ′(u) +

∂u

∂t
= 0. (12.4.18)

The first equality follows the Chain Rule for differentiation. Note that for all the
differentiations it is necessary that the derivatives exist. We only consider (piece-
wise) smooth solutions. The method of characteristics is used to study qualitative
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Figure 12.9: Formation of a discontinuity.

aspects of the solution of the Buckley-Leverett equation. As an example we treat
the case that f (u), f ′(u), f ′′(u) > 0. Suppose that u(x, 0) = u0(x) is given as the
initial condition. Now we show by a contradiction argument that no smooth solu-
tions for u(x, t) can exist if u0(x) is a decreasing function. We recall the characteris-
tic equation (12.4.17) and assume that u0(x) is a decreasing function. We take two
points (x1, t0) and (x2, t0) with x2 > x1 (see Figure 12.9. Then, u(x2, t0) < u(x1, t0)
and since f ′′(u) > 0, we obtain

dx1

dt
= f ′(u(x1(t), t)) > f ′(u(x2(t), t)) =

dx2

dt
. (12.4.19)

The last equation is justified since
d

dt
u(x(t), t) = 0 (u(x, t) is constant along its

characteristics and hence the characteristics are straight lines). Relation (12.4.19)
implies that characteristics intersect and hence the solution becomes multi-valued
and the model breaks down. At this point it is possible to assign a large class of
solutions to the model problem. Later, in this section, it will turn out that only one
solution is physically relevant since it conserves mass. This is a solution with a
discontinuity.

As an other example we consider the case f ′′(u) > 0 with the initial condition

u(x, 0) = u0(x) =

{
0, for x < 0,

1, for x ≥ 0.
(12.4.20)

Use of the method of characteristics gives with x1 → 0− and x2 = 0 and hence

x′1(t) = f ′(u(x1(t), t)) < f ′(u(x2(t), t)) = x′2(t). (12.4.21)

This implies that the characteristics diverge (see Figure 12.10). For this case we
will have a continuous solution. We see that the method of characteristics gives
insight into whether or not smooth solutions are possible or whether a discontinu-
ous initial condition stays a shock or develops into a smooth solution. The nature
of the continuous and discontinuous solutions will be discussed in the next two
sections.
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Figure 12.10: Formation of the rarefaction or expansion wave.

12.4.2.1 The smooth solution

For u0(x) =

{
0, for x < 0

1, for x ≥ 0
and f ′′(u) > 0, then, from the characteristics we saw

that the solution loses its discontinuous behavior. Since in a numerical method
for a PDE the initial drop occurs over at least one grid-spacing, the numerical ini-
tial condition is continuous. The method of characteristics then implies that the
solution stays continuous. Further, for f ′′(u) < 0 we will have convergence to
a discontinuous solution as time proceeds. This will be the topic in the next sec-
tion. Now we examine the continuous solution when f ′′(u) > 0. Therefore, we set

u(x, t) = g(η), η =
x

t
with f ′(0) < η < f ′(1), then substitution into the Buckley-

Leverett equation (12.4.16) gives with use of the Chain Rule for differentiation

− x

t2
g′(η) + 1

t

d

dη
f (g(η)) = 0. (12.4.22)

This gives

ηg′(η) = f ′(g(η))g′(η). (12.4.23)

Hence g′(η) = 0 (constant state solution) or

f ′(g(η)) = η ⇒ g(η) = ( f ′)−1(η). (12.4.24)

In the implication we assume that f ′(u) is invertible on the domain of considera-
tion, the inverse of f ′(u) is denoted by ( f ′)−1. For a bounded solution u ∈ [0, 1]
we have that

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, for x < f ′(0)t,
( f ′)−1(

x

t
), for f ′(0)t < x < f ′(1)t,

1, for x > f ′(1)t.
(12.4.25)

A solution with the structure of Equation (12.4.25) is called a rare faction or an ex-
pansion wave. Physically, this often amounts a mixing behavior of two phases or
viscous fingering (as a Saffmann-Taylor instability), see Bear [4].

Example 12.4.1 For Burgers equation we have f (u) = u2

2 , hence f ′(u) = u. Therefore
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( f ′)−1(η) = η and the solution becomes with f ′(0) = 0 and f ′(1) = 1:

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, for x < 0,
x

t
, for 0 ≤ x ≤ t,

1, for x > t.

(12.4.26)

12.4.2.2 The discontinuous solution

We consider the case f ′′ > 0 ( f (u) is convex), and u(x, 0) = u0(x) =

{
1 for x < 0

0 for x ≥ 0
,

for the Buckley-Leverett equation. We saw for Burgers equation that the shock
speed is given by

s =
uL + uR

2
. (12.4.27)

We are going to calculate the shock speed by the use of a mass conservation argu-
ment for the Buckley-Leverett equation in general. An alternative formal deriva-
tion can be given by a consideration of weak solutions and compact support. This
is beyond the scope of this book and we refer the interested reader to the book of
Smoller [33]. Consider integration over x ∈ [a, b] of the Buckley-Leverett equation,
where a and b are chosen such that the interval contains the shock position:

b∫
a

∂u

∂t
= −

b∫
a

∂ f (u)

∂x
dx = f (u(a, t))− f (u(b, t)). (12.4.28)

Since the bounds in the above integral do not depend on t, we may interchange the
order of differentiation with respect to time and integration over the fixed interval

[a, b]. Further, the quantity
∫ b

a udx depends on t only, hence the partial differentia-
tion with respect to t can be written as an ordinary derivative with respect to t, to
give

d

dt

b∫
a

udx = f (u(a, t))− f (u(b, t)). (12.4.29)

Now suppose that the solution u is discontinuous at a curve s(t) where a < s(t) <
b, then by the use of Leibniz’ Rule and the Chain Rule for differentiation follows

d

dt

b∫
a

udx =
d

dt

⎡⎢⎣ s(t)∫
a

udx +

b∫
s(t)

udx

⎤⎥⎦
=

s(t)∫
a

∂u

∂t
dx + u(s−(t), t)s′(t) +

b∫
s(t)

∂u

∂t
dx − u(s+(t), t)s′(t).

(12.4.30)

Here we define s−(t) and s+(t) as the positions adjacent to the left and the right
side of the shock position respectively. Use of the Buckley-Leverett equation (12.4.16)
gives

d

dt

b∫
a

udx = f (u(a, t))− f (u(s−(t), t)) + u(s−(t), t)s′(t)+

f (u(s+(t), t))− f (u(b, t))− u(s+(t), t)s′(t). (12.4.31)
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Since Equation (12.4.29) holds, it follows from Equation (12.4.31) that(
u(s−(t), t)− u(s+(t), t)

)
s′(t) = f (u(s−(t), t))− f (u(s+(t), t)). (12.4.32)

Let s′(t) be the shockspeed, then if u(s−(t), t)− u(s+(t), t) �= 0, then

s′(t) =
f (u(s−(t), t))− f (u(s+(t), t))

u(s−(t), t)− u(s+(t), t)
=:

[ f (u)]

[u]
. (12.4.33)

This equation is known as the Rankine-Hugoniot condition. Note that if u(s+(t), t)
tends to u(s−(t), t) (i.e. the continuous case) then the speed of a characteristic is
recovered (see exercise 19.1).

Exercise 12.4.2 Show that, for u(s+(t), t) tending to u(s−(t), t), the speed of a charac-
teristic is recovered.

The case of f ′′(u) > 0 has been examined now, the case of f ′′(u) < 0 can be
addressed likewise. This is left as an exercise.

Exercise 12.4.3 Given the Buckley-Leverett equation with f ′′(u) < 0 with

u(x, 0) =

{
uL, x < 0

uR, x ≥ 0
, uL �= uR. Under which conditions will be the shock be sta-

ble and under which conditions will a rarefaction develop? Motivate this by the use of
characteristics.

Exercise 12.4.4 Given Burgers equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0, with u =

{
1, x < 0

0, x ≥ 0
. (12.4.34)

Describe the solution for x ∈ R and t > 0.

12.4.2.3 The non-convex case

We abandon the convexity condition for f (u) and consider

∂u

∂t
+

∂ f (u)

∂x
= 0, with f (u) =

u2

u2 + (1 − u)2
. (12.4.35)

This choice of f (u) arises in many applications of two-phase flow in porous media
where influences of gravity are neglected. The following initial condition is used

u(x, 0) = u0(x) =

⎧⎪⎨⎪⎩
1, x < 0,

1 − x
ε , 0 ≤ x ≤ ε,

0, x > ε

for some ε > 0. (12.4.36)

To gain insight into the qualitative behavior of the solution, characteristics are
used:

dt

ds
= 1,

dx

ds
= f ′(u) hence

dx

dt
= f ′(u). (12.4.37)

Since f ′(u) = 0 for u = 0 and u = 1, it is clear that characteristics, originating from
the negative part of the x-axis (x < 0) and from x > ε, move vertically upward.

Further, since f ′′(u) = 0 at u = 1
2 (corresponding with x = ε

2 at t = 0) the slope
of the characteristics tends to be less vertical as x increases within the interval
0 < x <

ε
2 (at t = 0). In the interval ε

2 < x < ε at t = 0, the characteristics tend
to be more vertical again. This is illustrated in Figure 12.11. For the characteristics
originating from the x-axis, the following interesting features are observed:
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u = 1 0 < u < 1 ε u = 0

Figure 12.11: A sketch of the characteristics that originate from the x-axis.

• Characteristics originating from the interval 0 < x < ε
2 diverge and hence a

rare faction develops.

• Characteristics originating from the interval ε
2 < x < ε converge and inter-

sect and hence a shock develops.

In the remainder of this section some mathematical background for the construc-
tion of analytical solutions is presented. For this purpose a traveling wave argu-
ment is given for the Buckley-Leverett equation with an added ’viscosity term’:

∂u

∂t
+

∂ f (u)

∂x
= ν

∂2u

∂x2
, ν > 0. (12.4.38)

We only consider solutions for which

u(−∞, t) = uL, u(∞, t) = uR. (12.4.39)

For the traveling wave structure, we set

u(x, t) = v(η), with η =
x − ct

ν
. (12.4.40)

This equation transforms with the ’boundary conditions’ into

−cv′ + ( f (v))′ = v′′
v(−∞) = uL and v(∞) = uR.

(12.4.41)

The above differential equation is integrated to obtain

−cv + f (v) = v′ + A. (12.4.42)

In the above equation c and A are determined from the ’boundary conditions’ at
±∞. Since v has horizontal asymptotes at |η| → ∞, it is necessary that v′(η) → 0
as |η| → ∞. Hence the ’conditions’ at |η| → ∞ imply

−cuL + f (uL) = A
−cuR + f (uR) = A

}
⇒ c =

f (uR)− f (uL)

uR − uL
, A = f (uL)− cuL. (12.4.43)
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Hence Equation (12.4.42) changes into

v′ = f (v)− f (uL) + c(uL − v). (12.4.44)

Suppose that there exists a v̂ between uL and uR for which

f (v̂)− f (uL) + c(uL − v̂) = 0 ⇒ v′ = 0 at v = v̂. (12.4.45)

Then we are at an equilibrium point of Equation (12.4.44) and hence v = v̂ for
η ∈ R and herewith a contradiction with the boundary conditions is obtained.
This implies that v is a strictly monotonic function of η and hence a traveling wave
is strictly monotonic. Therewith

uL < uR ⇒ v′ > 0 ⇒ v > uL

uL > uR ⇒ v′ < 0 ⇒ v < uL.
(12.4.46)

Division of Equation (12.4.44) by uL − v and use of the above observations gives
after some rearrangement

c =
f (uL)− f (v)

uL − v
+

v′

uL − v
<

f (uL)− f (v)

uL − v
, (12.4.47)

since v′
uL−v < 0. The above equation is formulated as

c =
f (uR)− f (uL)

uR − uL
<

f (uR)− f (v)

uR − v
, (12.4.48)

for all v between uL and uR. The above inequality is a sufficient and necessary
condition for the existence of a traveling wave solution. It is clear that relation
(12.4.48) is a consequence of the above arguments and hence (12.4.48) poses a nec-
essary condition for the existence of a traveling wave solution. Next we show
that condition (12.4.48) is sufficient for the existence of a traveling wave solution,
i.e. (12.4.48) guarantees the existence of a traveling wave, therefore we integrate
Equation (12.4.44) to obtain

v(η)∫
uL+uR

2

ds

f (s)− f (uL) + c(uL − s)
= η. (12.4.49)

The traveling wave solution exists if the above integral exists. Condition (12.4.48)
implies that the denominator of the above integrand is non-zero for v between
uL and uR. Hence, the integrand is bounded and therefore the above integral ex-
ists. This guarantees the existence of a traveling wave. Now, suppose that f (u)
is convex-concave and that f (0) = 0 and f (1) = 1, we investigate the possibil-
ity for traveling waves. See Figure 12.12 for a sketch of f (u). We distinguish the
following cases:

• uL > uR = 0, then v′ < 0 and hence from Equation (12.4.44) follows

f (v) < f (uL)− c(uL − v) = f (uL)+
f (uL)

uL
(v−uL), note that uR = 0 = f (uR).

(12.4.50)
The graph of the right-hand side of the above inequality is indicated by the
dotted line in Figure 12.12. The position u1 is the intersection of the dotted
line and f (v) and hence the above inequality no longer holds if v ≥ u1 and
thus traveling waves exists for values of 0 = uR ≤ uL < u1.
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Figure 12.12: A sketch of the function f .

• uL < uR = 1, then v′ > 0 and hence from Equation (12.4.44) follows

f (v) > f (uL) +
f (uL)− 1

uL − 1
(v − uL), note that uR = 1 = f (uR). (12.4.51)

The graph of the right-hand side of the above inequality is indicated by the
dashed line in Figure 12.12. The position u2 is the intersection of the dashed
line and the function f (v) and hence the above inequality no longer holds if
v ≤ u2 and thus traveling waves exist for values of u2 < uL ≤ u2 = 1.

Since condition (12.4.48) holds for any ν > 0 (hence also for ν → 0), it is used as an
additional ’entropy condition’ for traveling waves. As ν → 0 this traveling wave
becomes a shock, due to the intersection of the characteristics, with velocity

c =
f (u)− f (uL)

u − uL
≥ f (uR)− f (uL)

uR − uL
for u between uL and uR. (12.4.52)

Solutions possibly consist of a combination of a rare faction and a shock.

12.4.2.4 Construction of solutions

Let f (u) have a continuous second order derivative on the interval [0, 1], and let f
satisfy the following requirements:⎧⎪⎪⎨⎪⎪⎩

f (s) > 0, f ′(s) > 0 for s ∈ (0, 1)
f (0) = 0, f (1) = 1
f ′′(s) > 0 for s ∈ [0, ŝ)
f ′′(s) < 0 for s ∈ (ŝ, 1]

(12.4.53)

for some ŝ ∈ (0, 1). Further, u(x, t) satisfies⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+

∂ f (u)

∂x
= 0

u(x, 0) = u0(x) =

{
1, x < 0

0, x > 0

(12.4.54)
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We will construct a solution which consists of a rarefaction and a shock. We see
that uR = 0. For the traveling wave part one obtains that a traveling wave is
allowed for 0 = uR ≤ uL < u1 < 1, where u1 is the value at which

f ′(u1) =
f (u1)− f (uR)

u1 − uR
and f (u1) =

f (u1)− f (uR)

u1 − uR
u1, ( note that uR = 0).

(12.4.55)
This follows from the arguments of the preceding section. The right-hand sides of
the two equations are consecutively the derivative of the straight line and the line
itself at u = u1. Both expressions imply that u1 satisfies

u1 − f (u1)

u1
= 0. (12.4.56)

This equation can be solved for u1 by the use of a zero-point method. There is a

shock over uR = 0 and uL = u1 which travels at the constant speed c = f (u1)
u1

.

For the part u ∈ [u1, 1] no traveling wave exists, there a rarefaction is obtained, i.e.
u = g(η), η = x

t , for uL = 1 and uR = u1 as the respective left- and right state.
Substitution of this rarefaction behavior, gives

g′(η) = 0 (constant state) or η = f ′(g(η)). (12.4.57)

This implies that

g(η) =

⎧⎪⎨⎪⎩
1, for 0 < η < f ′(1)
( f ′)−1(η) for f ′(1) < η < f ′(u1)

0 for η > f ′(u1)

. (12.4.58)

Hence the solution is constructed by

u(x, t) =

⎧⎪⎨⎪⎩
1, for 0 < x < f ′(1)t
( f ′)−1( x

t ) for f ′(1)t < x < f ′(u1)t

0 for x > f ′(u1)t

. (12.4.59)

Exercise 12.4.5 Construct the analytical solution of the same problem except for the initial
condition

u(x, t) = u0(x) =

{
0, for x < 0,

1, for x > 0,
(uR = 1), (12.4.60)

by use of the arguments of the preceding section.

12.5 Summary of Chapter 12

This chapter treats an introduction into the transport equation, which is also com-
monly referred to as a first order hyperbolic conservation law. To gain insight into
the behavior of the solutions and the nature of the boundary and initial conditions,
characteristics are treated. Formerly, many numerical techniques were based on a
direct solution of the characteristic relation. Further, the most classical numerical
methods for the solution of the transport equation are described. Finally, some
mathematical aspects of the structure of the solution are presented. First, the flux-
function f (u) is assumed to be convex. Subsequently, the convexity condition for
f (u) is dropped. This case is crucial when considering two-phase flow in porous
media without gravity.



262 Numerical methods in scientific computing

12.6 Appendix: requirements on flux-limiters

In this appendix we comment on the requirements on the limiter function. The
requirements

0 ≤ ψ(ri) ≤ ri

0 ≤ ψ(ri) ≤ 1,
(12.6.1)

are demonstrated in this section for the linear hyperbolic partial differential equa-
tion only, i.e.

∂u

∂t
+

∂u

∂x
= 0. (12.6.2)

Before we continue the motivation, the concept of the Total Variation (TV) is intro-
duced:

TV(w) :=
i=∞

∑
i=−∞

|wi − wi−1|. (12.6.3)

The total variation is high for oscillatory functions and zero for functions with a
constant value. The only attractive numerical methods contain a decreasing total
variation. Because these methods will give a damping of unphysical oscillations.
Let j denote the time-step, then, it is required that:

TV(wj+1) ≤ TV(wj), (12.6.4)

then the method is called Total Variation Diminishing (or briefly TVD).

We shall show now that Euler forward time integration is TVD, if conditions (12.6.1)
are satisfied. Euler forward time integration gives

w
j+1
i = w

j
i − Δt

f
j
i+1/2 − f

j
i−1/2

Δx
, (12.6.5)

with

f
j
i+1/2 = w

j
i + ψ(ri)(w

j
i+1 − w

j
i). (12.6.6)

Here ri is a measure of the smoothness of the data, defined by

ri :=
w

j
i − w

j
i−1

w
j
i+1 − w

j
i

. (12.6.7)

We write this as

w
j+1
i = w

j
i −

Δt

Δx
(w

j
i+1 − w

j
i)

(
1 +

ψ(ri)

ri
− ψ(ri)

)
, (12.6.8)

where the Definition (12.6.7) for ri was used. Harten shows that a sufficient condi-
tion for TVD in the sense of relation (12.6.4) is given by

0 ≤ 1 +
ψ(ri)

ri
− ψ(ri−1) ≤ 1. (12.6.9)

This is motivated as follows. From Equation (12.6.8) follows for w
j+1
i :

w
j+1
i−1 = w

j
i−1 −

Δt

Δx
(w

j
i − w

j
i−1)

(
1 +

ψ(ri−1)

ri−1
− ψ(ri−1)

)
, (12.6.10)
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Subtraction of Equation (12.6.8) from (12.6.10), gives

w
j+1
i − w

j+1
i−1 = (w

j
i − w

j
i−1)

(
1 − Δt

Δx

(
1 +

ψ(ri)

ri
− ψ(ri−1)

))
+

+
Δt

Δx

(
1 +

ψ(ri−1)

ri−1
− ψ(ri−2)

)
(w

j
i−1 − w

j
i−2).

(12.6.11)

Subsequently we take the absolute value and sum over all indices i and use the
triangle identity to obtain:

i=∞

∑
i=−∞

|wj+1
i − w

j+1
i−1| ≤

i=∞

∑
i=−∞

|wj
i − w

j
i−1|

(
1 − Δt

Δx

(
1 +

ψ(ri)

ri
− ψ(ri−1)

))

+
i=∞

∑
i=−∞

Δt

Δx

(
1 +

ψ(ri−1)

ri−1
− ψ(ri−2)

)
|wj

i−1 − w
j
i−2|

(12.6.12)
Next we require condition (12.6.1) to hold and shift the index of the second sum-
mation in the right-hand side so that most terms cancel. Hence we are left with

i=∞

∑
i=−∞

|wj+1
i − w

j+1
i−1| ≤

i=∞

∑
i=−∞

|wj
i − w

j
i−1|. (12.6.13)

Hence the discretization is TVD if condition (12.6.1) is satisfied.





Chapter 13

Moving boundary problems

Objectives

In previous chapters several numerical methods have been presented and applied
to model problems: (Navier) Stokes and Euler equations, Transport in porous me-
dia, Diffusion problems and Wave equations. In industrial applications a large
amount of completely different problems arise. An important class of problems
is that of free and moving boundaries. In free-surface problems the boundary (or
interface) is not known a-priori but it is a part of the solution. In case of moving
boundaries the boundary changes in time. Here an example of a moving boundary
problem, the so-called Stefan problem, is given. This describes, for example, melting
of ice or solidification of liquid metals.

Free/moving boundary problems arise in phase transitions (such as solidifi-
cation), flow problems, crystal growth, steam injection in oil and gas reservoirs
and in bubbly flow. Free boundary problems also occur in finance, where they
are solved to determine the price of a call option (the right to purchase shares).
In this chapter a moving boundary problem with heat diffusion (Fourier), which
is referred to as the classical Stefan problem, is presented. The model is applied
to freezing of water. Several well-known numerical solution procedures to solve
Stefan problems are presented. The advantages and disadvantages of particular
methods will be described. For a qualitative picture of the solution a reference is
given to exact solutions that hold whenever the domain is of infinite size.

13.1 The formulation of a classical Stefan problem: ice

and water

The scientist J. Stefan studied the melting and freezing of the ice-caps near the
North pole of the earth [34]. Using his experiments, he formulated a model to de-
scribe the area of the ice-caps as a function of time and the classical Stefan problem
was born. Weber [47] was, as far as known the first to study the Stefan problem
mathematically and he found a so-called ’self-similar’ solution. For more histor-
ical and mathematical background on the classical Stefan problem and its relat-
ing mathematics, we refer to the work of Vuik [46, 45]. In this chapter we con-
sider freezing of water. For more physical background we refer to the textbook of
Carslaw and Jaeger [9] . For the sake of illustration, we consider an open rectan-
gular domain Ω := {(x, y) ∈ R

2 : 0 < x < 1, 0 < y < 1} that is initially filled
with water at temperature T0. The boundary of Ω is given by ∂Ω, which is divided
into ∂Ω1, ∂Ω2, ∂Ω3 and ∂Ω4. The areas, occupied by ice and water, are respectively
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Figure 13.1: Geometry of the domain.

given by the non-overlapping subdomains Ω1(t) and Ω2(t), where the boundary
between water and ice is given by the line S = S(t). This boundary S(t) is also
referred to as the (moving) interface. The geometry is shown in Figure 13.1. The
temperature in Ω1 and Ω2 is denoted by respectively T1 and T2, the temperature
in Ω is denoted by T(x, y, t).

At the interface, (x, y) ∈ S(t), between water and ice the temperature is T = Ts

(freezing temperature) at all times. At the initial stage we have a temperature T0

and we assume that the whole domain is filled with water: Ω2(0) = Ω. At x = 0,
the temperature is prescribed: T = T∗ for (x, y) ∈ ∂Ω1, T∗ < Ts < T0. Since T∗ is
below the freezing temperature, the water freezes as time proceeds. The moving
interface starts at x = 0 and moves to the right. We assume that heat transport
in ice and water only takes place by conduction, i.e. heat diffusion. A further
assumption is that there is no heat flux across the other boundaries ∂Ω2 to ∂Ω4.
The normal velocity of the interface is denoted by vn. Summarizing we have the
following mathematical problem where in both ice and water a heat equation is
satisfied. At the interface an amount of heat is produced by the freezing of the
water (latent heat). The differential equation describing the process in the interior
of the domain is given by:

ρc
∂T

∂t
= λΔT, x ∈ Ω, (13.1.1)

with initial condition
T = T0, x ∈ Ω. (13.1.2)

The boundary conditions are

T = T∗, x ∈ ∂Ω1, (13.1.3)

∂T

∂n
= 0, x ∈ 4∪

k=2
∂Ωk (13.1.4)

On the interface we need the following two conditions

T = Ts, x ∈ S(t), (13.1.5)



13. Moving boundary problems 267

and (latent heat)

ρ1Lvn = λ1
∂T1

∂n
− λ2

∂T2

∂n
, x ∈ S(t). (13.1.6)

We need two interface conditions to calculate the position of the interface. This
problem is the classical Stefan problem in a rectangular domain. Equation (13.1.6)
gives the rate of the interface. The unknowns are the temperature T and the po-
sition of the interface S between both phases. The densities of water and ice are
respectively given by ρ1 and ρ2. The parameter L represents the latent heat of
solidification. The parameters c1, c2 and λ1, λ2 denote the heat capacities and
heat conductivities of respectively ice and water. Existence and uniqueness of a
solution pair T and S has been established in Cannon [8] and Vuik [45]. Before
treating some numerical solution techniques, the exact solution for a simple one-
dimensional case will be given. This solution, also called a self-similar solution,
shows the qualitative behavior of this kind of problem.

13.2 An exact (self-similar) solution for an unbounded

region

With a self-similar solution we mean a solution for the temperature that depends on

a pair of x and t, e.g. T = T(
x√

t
). To get some quick insight into the behavior of the

solution of the Stefan problem, we present a self-similar solution of the Stefan prob-
lem for an unbounded interval: x ∈ (0, ∞). The solution is for a one-dimensional
case and mimics the actual behavior of the solution of the Stefan problem (13.1.1)-
(13.1.6) especially in the early stages when the temperature at ∂Ω3 has not been
effected by the freezing front yet. Hence it serves as a test-problem, which can be
used to check the behavior of the results from numerical solutions. We require that
the solution for the temperature, T = T(x, t) is bounded, continuous and mono-
tone in x and t and hence its derivative with respect to x vanishes as x → ∞. For
this purpose we search bounded solutions of the following problem, with the same
symbols as in the previous section:

ρc
∂T

∂t
= λ

∂2T

∂x2
(13.2.1)

T(x, 0) = T0 (13.2.2)

T(0, t) = T∗ (13.2.3)

S(0) = 0 (13.2.4)

ρ1L
dS

dt
= λ1

∂T1

∂x
− λ2

∂T2

∂x
, x = S(t) (13.2.5)

T(S(t), t) = Ts (13.2.6)

The above problem, equations (13.2.1)-(13.2.6) admits self-similar solutions in the

form T = T(
x√

t
) and S = k

√
t. Explicit formulas for T, S, k can be determined us-

ing procedures given in the text-books [9, 13] and the very early paper of Neumann
[47].

In Figure 13.2 the temperature profile during freezing of water at consecu-
tive times is shown. The initial water temperature is T0 = 2o = 275K, freez-
ing temperature, Ts = 0o = 273K. The temperature at x = 0 is maintained at
T∗ = −17o = 250K at all stages. Further physical data are given in Table 13.1.
Figure 13.3 displays the interface position (ice thickness) as a function of time for
various temperatures at x = 0 (i.e. T∗).
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Figure 13.2: The temperature profile of freezing water at consecutive times for T∗
= −23 ◦C. The rate factor k is obtained from the numerical solution, see [9].

Table 13.1. Input data.

Physical quantity Value Si-Unit
T∗ 250 K
Ts 273 K
T0 275 K
λ1 2.2 W/(mK)
λ2 0.55 W/(mK)
L 33400 J/kg
ρ1 920 kg/m3

ρ2 1000 kg/m3

13.3 Numerical methods

Various numerical techniques are known to solve Stefan problems. For an overview
we refer for instance to the book of Crank [13], where roughly the following meth-
ods are distinguished: Front tracking and Fixed domain methods. The main fea-
ture of the Fixed domain methods is that the front is defined implicitly and the
discretization mesh does not move. Whereas the front is followed explicitly and
the mesh moves with the interface in the Front tracking methods. Besides fixed
domain and front tracking methods there exists also a hybrid form where a fixed
basis grid is used, which in each time step is locally adapted to the front. After the
time step the local adaptation is removed.

13.3.1 Moving grid methods

A Front tracking method explicitly tracks the position of the interface. The equa-
tions for the temperature are solved using a discretization method in both subdo-
mains and the discrete temperature gradients are substituted into the rate equa-
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Figure 13.3: The thickness of ice as a function of time for various values of T∗.

tion (see Equation (13.1.6) or (13.2.5)). First we treat a one-dimensional case to
illustrate some of the numerical problems that arise in Front tracking methods.
Subsequently, we briefly treat a two-dimensional example.

A one-dimensional example

We consider the same situation as in Equations (13.2.1)-(13.2.6) but now the inter-
val in x is bounded, say x ∈ [0, 1]. We again apply a no-flux boundary condition at
x = 1, i.e.:

λ2
∂T

∂x
= 0, x = 1. (13.3.1)

For now, we assume that the interface position S(t) is given within the interval
0 < S(t) < 1, and hence Ω1 and Ω2 exist and are nonempty sets. Furthermore, we
assume that the temperature profile is given at t = 0. We use the method of lines
to solve the problem. First we deal with the spatial discretization, where we divide
Ω1 and Ω2 into N grid nodes, i.e.

Δx1 =
S(t)

N
, Δx2 =

1 − S(t)

N
. (13.3.2)

Note that the grid spacings Δx1 and Δx2 depend on time. The index i refers to the
grid node:

T1,i := T1(i Δx1), (13.3.3)

T2,i := T2(S(t) + i Δx2). (13.3.4)

Further, we use the boundary conditions for t > 0

T1,0 = T∗, T1,N = Ts, for Ω1, (13.3.5)

T2,0 = Ts, λ2
T2,N+1 − T2,N−1

2 Δx2
= 0, for Ω2. (13.3.6)

Note that we add an extra grid point N + 1 for Ω2 to maintain an accuracy of
O(Δx2

2) for the global discretization over Ω2.
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Exercise 13.3.1 Write down the equations from the discretization of the diffusion equation
in both subdomains (ice and water) where we use an implicit Euler time integration.

Since the interface and mesh movement are not incorporated yet into the dis-
cretization, we write tildes above the unknowns.

Exercise 13.3.2 To guarantee a second order spatial accuracy globally, we introduce ghost-

points near the moving interface S(t). Derive expressions for the ghostpoints T̃
j+1
1,N+1 and

T
j+1
2,−1. Hint: treat the discretization of the interface like an internal point in the domain.

The interface S moves, and the speed is approximated by

ρ1L
dS

dt
≈ ρ1L

Sj+1 − Sj

Δt
≈ λ1

T̃
j+1
1,N+1 − T̃

j+1
1,N−1

2 Δx1
− λ2

T̃
j+1
2,1 − T̃

j+1
2,−1

2 Δx2
, (13.3.7)

where we use the expressions that were obtained in Exercise 13.3.2. From above

expression Sj+1 is easily computed. We update the grid by computing Δx1 =
Sj+1

N

and Δx2 =
1 − Sj+1

N
, further note that at all stages we have

T
j+1
1,N = TS = T

j+1
2,0 . (13.3.8)

The temperature at the new grid nodes are obtained using linear interpolation. Let

x
j
k,i denote the position of the ith grid point in Ωk at time step j, i.e.

x
j
k,i =

⎧⎪⎨⎪⎩
i Δx1, for k = 1

Sj + i Δx2, for k = 2

, (13.3.9)

and the tildes represent the temperatures that have been computed from the dis-
cretization of the heat equation in both regions, then

T
j+1
k,i = T̃

j+1
k,i +

∂T̃
j+1
k

∂x
|i(x

j+1
k,i − x

j
k,i) ≈ T̃

j+1
k,i +

T̃
j+1
k,i+1 − T̃

j+1
k,i−1

2Δxk
(x

j+1
k,i − x

j
k,i) (13.3.10)

Now the temperature has been updated correctly. Using this interpolation, the
time integration can be rewritten, after division by Δt of Equation (13.3.10), by

T
j+1
k,i − T̃

j+1
k,i

Δt
− x

j+1
k,i − x

j
k,i

Δt

T̃
j+1
k,i+1 − T̃

j+1
k,i−1

2Δxk
= 0, k ∈ {1, 2}. (13.3.11)

Equation (13.3.11) represents a discrete convection equation, with mesh velocity

vmesh =
x

j+1
k,i − x

j
k,i

Δt
(13.3.12)

that is solved explicitly and using a central discretization. Since the temperature
is smooth within Ω1 and Ω2, central discretization does not produce any unphys-
ical wiggles (see Chapter 1). However, explicit time integration gives conditional

stability:
umeshΔt

Δx
< 1 (see Chapter 1). For most practical situations, this is not so

limiting since umesh is usually small. We end the one-dimensional description with
some general remarks:
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1. We have described the moving-grid method for cases when both Ω1 and Ω2

exist. In practice one assumes at t = 0 that ice is already present in a very
thin layer. When the ice layer is small, one can use fewer grid nodes within
Ω1 and similarly fewer grid nodes within Ω2 when Ω2 almost vanishes. This
implies that at certain times the grid needs to be regenerated.

2. In the above presentation of the numerical method, the determination of the
position of the interface is rather inaccurate. One can use an iterative Trapez-
ium method to improve the accuracy of the position of the interface. We omit
the treatment here and refer the interested reader to [43].

A two-dimensional example
For the illustration of the two-dimensional solution of a Stefan problem, we con-
sider an ’ice-disc’ in a rectangular domain filled with water. For the sake of illus-
tration we assume that the temperature in the ’ice-disc’ is constant in space. Due to
a relatively high water temperature the ice starts to melt and the circumference of
the ’ice-circle’ decreases. This gives a change of topology for the elements attached
to the moving boundary. Mathematically we deal with the following problem:

ρ2c2
∂T

∂t
= λ2�T, x ∈ Ω (13.3.13)

T = T0, x ∈ Ω, (13.3.14)

T = Ts, x ∈ S(t), (13.3.15)

T = T∗, x ∈ Ω, (13.3.16)

∂T

∂n
= 0, x ∈ 4∪

k=2
∂Ωk (13.3.17)

ρ1Lvn = −λ2
∂T

∂n
, x ∈ S(t). (13.3.18)

The equations in (13.3.13)-(13.3.18) are solved using a Finite Element method in
both subdomains and the discrete temperature gradients are substituted into the
rate Equation (13.3.18) to obtain the speed and position of the grid nodes at the
interface as a function of time. An unstructured grid is used for the Finite Element
discretization.

Exercise 13.3.3 Derive a Finite Element formulation for the differential equation for the
temperature with boundary and initial conditions in the two-dimensional heat diffusion
problem (13.3.13)-(13.3.17), where we have as essential condition T = Ts at the interface
S.

Figure 13.4 shows an example of the initial mesh in subdomain Ω2. In this subdo-
main moves the circular inclusion Ω1. The interface is approximated by a spline.
Frequently the number of the nodes at the interface and in the subdomains is kept
constant. However, this is not necessary. Once the interface has been moved, the
position of the mesh points inside the subdomains are adapted. The value of the
temperature at the new positions of the grid nodes are unknown. To obtain these
values, one can either use interpolation or a correction for the displacement. Since
interpolation is rather expensive, a correction, taking into account the velocity of
the grid nodes, is recommended. When we compute the time-derivative between
the old and new points, a material derivative, as in fluid mechanics, is used:

dT

dt
=

∂T

∂t
+ umesh · ∇T, (13.3.19)
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x

y

Figure 13.4: The initial mesh in Ω2.

with the mesh-velocity umesh =
d

dt
x.

The temperature T is determined from

dT

dt
− umesh · ∇T = λΔT, for all interior mesh points. (13.3.20)

Above treatment is known as the Arbitrary Lagrangian Eulerian (ALE) method
and is very common in fluid dynamics. For a complete description of the Front
tracking method for a one-dimensional case we refer to Murray and Landis [28],
for two dimensions we refer to Segal et al [19]. The moving mesh is shown in
Figure 13.5. During the adaptation of the mesh the quality of the mesh must
be checked. As the length of the interface may change, the angles at the mesh-
points change as well especially near the moving interface. Further due to the
interface movement elements within both subdomains become either stretched or
contracted. To avoid ill-shaped elements, remeshing may be necessary. Remeshing
is expensive since the values of the temperature at the new mesh points have to be
determined using interpolation and a new mesh must be generated.

Figure 13.6 shows an example where the mesh has not been checked at the
boundary. Here the elements at the interface have become stretched and hence ill-
shaped. An example of remeshing is presented in Figure 13.7, where we display
the mesh at a point in time when the subdomain Ω1 has grown significantly. It
can be seen, also from Figure 13.4, that initially there were 5 grid nodes at the
moving boundary. For larger values of time, when the subdomain Ω1 has grown,
the number of grid nodes at the interface has increased, see Figure 13.7. Let β be
the angle of the elements in the domain, then remeshing has been applied on the
basis of the following criterion:

βmin ≤ β ≤ βmax,

where βmin = 10o and βmax = 120o. Whenever some element in the domain does
not satisfy this criterion, the domain is remeshed.
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Figure 13.5: The moving mesh of Ω2. The blue lines represent the moving bound-
ary after t = 0.

Figure 13.6: The mesh after significant growth of subdomain Ω1 with the origi-
nal mesh topology. The blue and black lines respectively represent the moving 
interface for t > 0 and t = 0.
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Figure 13.7: The mesh after significant growth of subdomain Ω1 with mesh topol-
ogy after remeshing. The blue and black lines respectively represent the moving 
interface for t > 0 and t = 0. Remeshing is applied whenever one of the angles 
of the elements falls outside of the range [10,120] degrees.

It will be clear that moving grid methods are rather expensive due to remesh-ing 
and difficult to program, especially in three dimensional problems. A great 
advantage, however, is that the interface is part of the boundary of the elements 
and therefore interface conditions can be satisfied easily.

13.3.2 A fixed domain method: the level set method

As an example of a Fixed grid method we consider the level set method. The 
method does not track the interface explicitly. The method is conceptually less self-
evident than the moving grid method. This is mainly because of the intro-duction 
of the level set function, which is sometimes also referred to as a ’pseudo-
temperature’. The method is very powerful especially for three dimensions. The 
level set method was first introduced by Osher and Sethian [29]. First we outline 
the level set method in a general way and subsequently we describe an applica-
tion to a 2D-Stefan problem. The application is for solidification and melting as 
studied by Chen et al [10]. The idea behind the level set function is as follows: We 
define an extra unknown, the pseudo-temperature. This unknown is only meant to 
define the interface implicitly. The sign of the pseudo-temperature determines in 
which phase or subdomain a node is at particular instant of time. Furthermore, the 
interface position coincides with the zero level of the pseudo-temperature and 
hence this position is tracked implicitly. Since the interface is convected by some 
velocity, one can derive a convection equation for the pseudo-temperature, which 
is solved together with the original PDE. The principles and the concept pseudo-
temperature are outlined in the coming subsections.

Application to the Stefan problem

Consider, as before, the heat equation in a solid and a liquid phase Ω1 and Ω2 with 
interface S(t):

ρc
∂T

∂t
= ∇ · (λ∇T), x ∈ Ω, (13.3.21)
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ρ1Lvn = λ1
∂T1

∂n
− λ2

∂T2

∂n
, x ∈ S(t), (13.3.22)

with similar initial and boundary conditions as in Equations (13.1.1)-(13.1.6). The
complete region is used as computational domain. We define the level set function,
which is negative in one phase and positive in the other phase, φ. At time t = 0, φ
is defined as

φ =

⎧⎪⎨⎪⎩
−d(x), for x ∈ Ω1(0)

0, for x ∈ S(0)

+d(x), for x ∈ Ω2(0)

, (13.3.23)

where the most important feature of φ is φ(x, 0) = 0 on S(0) and that φ < 0 on
Ω1 and φ > 0 on Ω2. Hence the level set function φ is used to indicate in which
phase a specific gridnode is. The level set function φ is also sometimes referred
to as a ’pseudo-temperature’. We prescribe the level set function φ at t = 0 as a
signed distance function: the function d ≥ 0 denotes the minimal distance between
a certain point x ∈ Ω and the boundary S(t). Also for t > 0 we require φ = 0 at
S(t), φ < 0 in Ω1 and φ > 0 in Ω2. From the definition of the function φ follows
that the interface can be determined for each given φ:

S(t) = {(x, y) ∈ D : φ(x, y, t) = 0} for t ≥ 0. (13.3.24)

Since φ(x(t), y(t), t) = 0 at the interface, it follows that the total derivative with
respect to time vanishes at the moving boundary

D

Dt
φ = φt +∇φ · r′ = 0 for r ∈ S(t).

Here r′(t) represents the speed of a point r(t) ∈ S(t) at the interface, where φ = 0.
This point coincides with the moving boundary and hence has the same speed as
the moving boundary, so

r′(t) = [λ∇T] := λ1∇T1 − λ2∇T2, for x ∈ S(t). (13.3.25)

This implies that the total derivative for points on the interface with respect to time
t (where φ = 0) can be written as

φt +∇φ · [λ∇T] = 0 for x ∈ S(t). (13.3.26)

Above equation only holds at the moving interface. In order to have φ as a signed
continuous function on the whole domain Ω, it must be prescribed in other posi-
tions of Ω as well. We do this by the use of the following PDE

φt + u · ∇φ = 0 for x ∈ Ω, (13.3.27)

where the vector function u : R2 × R+
0 → R2, will be defined as a continuous

extension of [λ∇T] over Ω, i.e.

u ∈ U := {u ∈ C(Ω) : u = [λ∇T] for x ∈ S(t)} for t > 0. (13.3.28)

We proceed to construct a continuous extension for u near S(t), by which we mean
that u is continuous at points near the interface position. This is based on the
principles which are described in [10].

For the moment we assume that we have an initial value for u for points not
on S. Furthermore, u is prescribed on S by the initial value of T. This implies
that if the components of u = (u1, u2) satisfy a first order hyperbolic (convection)
equation, then u is continuous near S(t). This convection problem is well-posed
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as long as the prescribed value is upwind from points away from S(t) where a
’boundary condition’ is imposed. Therefore, we set

∂u1

∂τ
+ sign(φφx)

∂u1

∂x
= 0, (13.3.29)

∂u2

∂τ
+ sign(φφy)

∂u2

∂y
= 0, (13.3.30)

subject to u1 =

[
λ

∂T

∂x

]
, u2 =

[
λ

∂T

∂y

]
, for x ∈ S(t), (13.3.31)

then u points away from S(t) and a well-posed definition of u is obtained. In
the above equations τ is a pseudotime, since the reason for the use of the above
equation is just to extend the velocity continuously near the interface. Further, for
(x, y) ∈ S(t), implying φ = 0 and hence sign(φφx) = 0 and sign(φφy) = 0, we
have

∂

∂τ
u = 0 ⇒ u = [λ∇T] for x ∈ S(t). (13.3.32)

In principle we have given a full system of PDE’s to solve the Stefan problem
using the level set method. The level set function φ defines the position of the
interface. Further, defining it as a signed distance function, it satisfies nice mono-
tonicity properties and the closer to zero a particular gridnode value is, the closer
the corresponding grid node is to the interface. It is particularly important to have
information whether a grid node is in subdomain Ω1 or Ω2 when the coefficients
in the heat equation are determined. Therefore, the sign of the level set function
is crucial. We want to have this information without having to track the position
of the moving interface explicitly like in the moving grid method. Furthermore,
for boundary conditions at the moving interface it is important to know whether a
gridnode is a neighbor of the interface.

One-dimensional implementation

As an example of the application of the level set method, we consider the 1D equa-
tion

ρc
∂T

∂t
= λ

∂2T

∂x2
, x ∈ Ω (13.3.33)

ρ1L
dS

dt
= λ1

∂T1

∂x
− λ2

∂T2

∂x
, x = S(t), (13.3.34)

T = T∗, x = 0, (13.3.35)

T = Ts, x = S(t) (13.3.36)

∂T

∂x
= 0, t > 0, (13.3.37)

T = T0, S = 0, t = 0. (13.3.38)

We describe the solution procedure at each time-step. We suppose here that φj, Tj, uj

are known. Let j be the time-step index, tj = jΔt and h = 1
N be the grid-spacing.

At each time-step we first solve the temperature field in both subdomains using
Finite Differences (see Figure 13.8), to obtain

ρ2c2
T

j+1
i − T

j
i

Δt
= λ2

T
j+1
i+1 − 2T

j+1
i + T

j+1
i−1

h2
, i ∈ {1, . . . , p − 2}. (13.3.39)

ρ1c1
T

j+1
i − T

j
i

Δt
= λ1

T
j+1
i+1 − 2T

j+1
i + T

j+1
i−1

h2
, i ∈ {p + 1, . . . , n}, (13.3.40)
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Figure 13.8: The gridpoints in the neighborhood of the moving interface.

For the gridpoints near the interface, we use the fact that φ represents a signed
distance function. To guarantee a O(h2) accuracy we use ghost points at both sides
of the interface. Let T̂p and T̂p−1 respectively represent ghost points belonging to
Ω1 := {x ∈ R : 0 < x < S(t)} and Ω2 := {x ∈ R : S(t) < x < 1}. We treat the
boundary condition at the right-hand side of the interface, in Ω2, and the treatment
for the boundary condition at the side of the subdomain Ω1 is left for the reader.
For i = p, we then have

ρ2c2

T
j+1
p − T

j
p

Δt
= λ2

T
j+1
p+1 − 2T

j+1
p + T̂

j+1
p−1

h2
+O(h2). (13.3.41)

The value for T̂p−1is computed from a Taylor expansion around φ = 0, i.e. the
interface S:

T̂p−1 = TS + (xp−1 − S)
∂T

∂x
|S +O(h2). (13.3.42)

The position of the interface, S, is obtained as the zero level of the function φ.
Having two values of φ with opposite sign, it is clear that the interface is between
the two corresponding positions. The interface position is then obtained by in-
terpolation using these points. The derivative of T at S is obtained from a Taylor
expansion around φp:

∂T

∂x
|S =

∂T

∂x
|xp − (xp − S)

∂2T

∂x2
|φp +O(h2) (13.3.43)

=
Tp+1 − T̂p−1

2h
− (xp − S)

Tp+1 − 2Tp + T̂p−1

h2
+O(h2) (13.3.44)

Equation (13.3.44) is substituted into Equation (13.3.42) where an expression for
T̂p−1 is obtained (after dropping the O(h2)-terms) and subsequently substituted
into equation (13.3.41). A similar procedure is done for the left-hand side of the
interface, and the matrix equation is subsequently solved. We need the gradients
of the temperature at the interface for the velocity of the interface (see the equation
(17.49). When we use for the discretization of the gradient the one-sided discretiza-
tion formulas

∂T2

∂x
(S(t), t) =

Tp − TS

xp − S
(13.3.45)

∂T1

∂x
(S(t), t) =

TS − Tp−1

S − xp−1
, (13.3.46)

for the determination of the gradients, it can be seen that once S → xp or S → xp−1

division by zero results. This causes the jumps in the velocity of the interface as
shown in Figure 13.11. Therefore, we use for the gradients at the interface at both
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sides:

∂T2

∂x
=

Tp − TS

xp − S

xp − S

h
+ (1 − xp − S

h
)

Tp+1 − Tp

h
(13.3.47)

=
Tp − TS

h
+ (1 − xp − S

h
)

Tp+1 − Tp

h
(13.3.48)

∂T1

∂x
=

TS − Tp−1

S − xp−1

S − xp−1

h
+ (1 − S − xp−1

h
)

Tp−1 − Tp−2

h
(13.3.49)

=
TS − Tp−1

h
+ (1 − S − xp−1

h
)

Tp−1 − Tp−2

h
(13.3.50)

This computation of gradients is called the weighted gradients approach . The result
using the weighted gradient approach is represented by the blue curve in Figure
13.11. Using both gradients, we determine the velocity of the interface. Given the
interface velocity, we solve the following equation to obtain the velocity field over
the whole domain, with the known level set function φ:

∂u

∂τ
+ sign(φφx)

∂u

∂x
= 0, x ∈ (0, 1) (13.3.51)

u(S) = λ1
∂T1

∂x
(S)− λ2

∂T2

∂x
(S) (13.3.52)

Here τ represents a pseudotime since the above equation just artificially extends
the velocity continuously. After the update of u we compute the update of the
signed distance function from solution of

∂φ

∂t
+ u

∂φ

∂x
= 0. (13.3.53)

Solution of Equations (13.3.53) and (13.3.51), (13.3.52) is done using upwind dif-

ferences. Note that in the solution of Equation (13.3.53) the discretization of
∂φ

∂x
depends on the sign of u. The function φ was initially chosen to be a signed dis-
tance function. However, at the course of the iteration process, the function φ
looses this property. This is not so bad in general, since only smoothness of φ is
necessary in all the steps taken until now. Hence, if φ is a signed distance function
at all time steps, then φ is continuous and then all the operations until now are
allowed. Therefore, one often requires φ to be a distance function although this is
not necessary. However, often it is desirable to have φ as a signed distance func-
tion if local curvatures of the interface are used. This is often done in relation to
surface tension. Furthermore, having φ as a distance function, guarantees that φ is
continuous, which is a necessary requirement. Therefore, we iterate

∂φ

∂τ
= sign(φ0)(1 − |∂φ

∂x
|). (13.3.54)

In order to get a signed distance function it is necessary that | ∂φ
∂x | = 1. To satisfy this

we consider Φ as the stationary solution of (13.3.54). This equation is solved using
the time-step as a kind of convergence parameter. Furthermore, τ is a pseudotime,
which is artificial for the convergence towards a stationary solution. We show
some results for 100 gridpoints for the freezing of water in Figures 13.9, 13.10.
Initially, we have an ice-layer of 3 gridpoints (0.03 m) and we apply a temperature
T∗ = −23◦C. The temperature-profile after 1 and 3 days is shown in Figure 13.9.
The position of the interface is shown in Figure 13.10. A good correspondence is
observed with the analytical solution (see Figure 13.2 and 13.3). However, since
the water area is bounded (S(t), 1) for the numerical solution, the ice-thickness
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Figure 13.9: Temperature profiles of freezing water at subsequent times. The data 
have been taken from Table 13.1. The temperature at x = 0 is −23 ◦C.
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Figure 13.10: The ice-thickness as a function of time for different temperatures at 
x = 0. Further data have been taken from Table 13.1.
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Figure 13.11: The velocity of the interface as a function of time for T = −23 ◦C at x 
= 0. Further data are from Table 13.1. The red curve represents the calculation for 
the one-sided gradients.

evolves faster than for the analytical solution where the water area is unbounded 
(S(t), ∞). Furthermore, we show the velocity of the interface as a function of time in 
Figure 13.11. The smooth curve represents the use of the weighted gradients.

13.3.3 Other applications of Stefan problems

Stefan problems occur also, among others, during solidification of metals or in the 
solid state. Here typical problems of phase transformations involving different lat-
tices (crystals) take place. Some examples are the dissolution or growth of particles 
in ferrous or non-ferrous alloys or the phase-transformation of ferrite to austenite 
in steels. Both processes occur during production and optimization of high quality 
metals and alloys. Models can be found in the book of Visintin [44]. Furthermore, 
similar numerical techniques are used to solve free boundary problems. We men-
tion the seepage of water through a porous dam as an example of a free boundary 
problem. This free boundary problem has been described in Crank [13]. Further-
more, it should be noted that Stefan problems are also solved by different methods, 
such as the phase-field approach, enthalpy method and the method of variational 
inequalities. These methods are beyond the scope of the book and their principles 
can be found in textbooks as [44], [13].

13.4 Summary of Chapter 13

In this chapter some examples of Stefan problems are formulated. A moving grid 
method to solve the Stefan problem is described. This method is conceptually 
simple, however for cases where several moving boundaries merge, the method 
fails. Further, the interpolation that has to be applied can be expensive. Next, a 
fixed grid method, the level set method, is described as a conceptually less obvious 
method. Here the interface was taken into account in an implicit way and hence the
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determination of the exact position of the interface may be less accurate. However,
the method is successfully used in cases where several interfaces merge or come
close together. Both methods have its benefits and disadvantages. Further, the
class of so-called self-similarity solutions have been referred to as a tool to validate
the behavior of solutions obtained from numerical methods in a qualitative way.
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band matrices, 154
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biharmonic equation, 24
bilinear transformation, 139
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boundary cells, 56
boundary condition, 53, 101
boundary conditions, 15, 20, 24, 64, 80
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boundary fitted coordinates, 48
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Boyle’s law, 22
Buckley-Leverett equation, 243

cable equation, 27
cell vertices, 55
central divided difference, 28, 52
CFL criterion, 225
characteristic, 230
characteristic equation, 230
characteristic relation, 230
checker board numbering, 167
Cholesky decomposition, 29
circle symmetry, 145
clamped beam, 147
clamped boundary, 24
clamped plate, 78
classical solution, 69
classification, 13
coarse grid, 183
coarsening level, 185
collocation, 126
compact matrices, 154
compatibility condition, 16
conforming element, 116

conservation, 1, 2, 51
conservation law, 6
conservation laws, 69
conservative form, 229
conservative scheme, 53
consistency, 200
constant coefficients, 14
constitutive equation, 78
continuous eigenvalue problem, 94
contraction, 190
contractive mapping, 190
control volume, 52, 55
convection diffusion, 36
convection term, 56
convection-diffusion equation, 56, 122,
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convergence of Ritz’s method, 95
conversion formula, 41
correction, 162
Crank-Nicholson, 202
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damped Jacob, 182
Darcy’s Law, 3
defect correction, 162
delta function, 115, 126
diagonally block tridiagonal matrix, 167
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diffusion equation, 195
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directional derivative, 4
Dirichlet boundary condition, 16, 27
Dirichlet boundary conditions, 17, 43
discrete maximum principle, 45
discrete transformation, 58
dispersion, 222
displacement, 24
dissipation, 221
divergence, 4, 51
divergence theorem, 5, 73

eigenfunctions, 94
eigenvibrations, 218
elastic string, 7, 69
elasticity modulus, 78



13. Moving boundary problems 287

element matrix, 104
element vector, 104
elliptic, 14, 15
elliptic operator, 20
energy norm, 87, 217
energy product, 87
envelope, 158
equilibrium, 14, 21
equilibrium solution, 195
error analysis, 57, 61
error estimate, 48, 117
error in FEM, 146
error in the boundary condition, 48
error in the fluxes, 54
essential boundary condition, 71, 80, 113
essential zeros, 158
Euler, 70
Euler-Lagrange equation, 73, 74
evolution, 14
exact solution, 31
existence, 17, 20

Fick’s Law, 3
finite difference methods, 1, 27
finite element method, 91
finite element methods, 1
finite element packages, 107
finite volume methods, 1
fixed domain, 258
fixed point form, 189
flexural rigidity, 148
flux limiters, 238
flux vector, 6
Fourier expansion, 94
Fourier’s law, 3
fourth order problems, 147
free boundary, 25
freely supported boundary, 25
front tracking, 258
frontal solution method, 160

Galerkin’s method, 123
Gauss, 5
Gaussian elimination, 154
Gaussian rules, 100
general curvilinear coordinates, 48
general minimization in 1-d, 72
generalized formulation, 120
generalized solution, 69
Gershgorin, 9
Gershgorin’s theorem, 204
ghost point, 65, 267
global error estimate, 44
gradient, 2

Gramm matrix, 96
Green, 74

half cell control volume, 60
heat conduction coefficient, 2
heat equation, 14, 15, 195
heat flow, 7, 20
Hermitian interpolation, 149
higher order polynomials, 135
Hilbert matrix, 94
homogeneous boundary conditions, 40
homotopy method, 192
Hooke’s Law, 78
horizontal numbering, 41
hyperbolic, 14, 15

incomplete factorizations, 177
incompressibility condition, 22, 66
inflow, 17
initial conditions, 15, 17
integration by parts, 71
interior molecule, 55
interpolation error, 47
irrotational, 3
isoparametric transformations, 138
isotherms, 2
iteration matrix, 167
iterative methods, 162

Jacobi’s method, 165
Jacobian, 58, 139

kinetic energy, 217
Krylov space, 1, 170

Lagrangian polynomial, 99
Laplace operator, 45
Laplace’s equation, 46
Laplacian, 15, 17
Laplacian equation, 40, 54
Laplacian in general coordinates, 58
large matrix, 104
large right-hand side, 104
Lax Wendroff scheme, 237
Lax-Milgram theorem, 11, 132
Lemma of Dubois-Reymond, 71, 73
level set, 264
limiter function, 239
line element, 113
linear basis function in R2, 109
linear interpolation, 46, 47
loaded plate, 78
lower triangular matrix, 156
LU-decomposition, 29, 154
lumping, 200, 202
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M-matrix, 164
mass matrix, 198
material derivative, 22
matrix vector form, 41
maximum principle, 18
mesh generation, 107
mesh Péclet condition, 39
mesh Péclet number, 38
method of lines, 197, 220
methods of lines, 209
midpoint rule, 100
minimal potential energy, 76
minimal surface problem, 75
minimization, 1
minimization with constraints, 150
mixed approach, simple example, 149
modulus of elasticity, 24
moving interface, 256
multi-grid methods, 1
Multigrid, 185
Multigrid methods, 170
multiplicators, 156

nabla, 2, 4
natural boundary, 120
natural boundary condition, 65, 71, 80,

113
natural boundary conditions, 17, 43
Navier-Stokes equations, 21
nearly orthogonal, 95
neglected set, 178
Neumann boundary condition, 16
neutrally stable, 217
Newmark, 224
Newton, 190
Newton iteration, 189
Newton-Cotes, 113
Newton-Cotes rule, 101
Newtonian fluid, 22
nodal points, 40
node point, 28
nodes, 40, 55
non equidistant grids, 51
non rectangular region, 43
non-conforming element, 116
non-homogeneous boundary conditions,

84
non-homogeneous essential boundary con-

dition, 121
non-symmetric problem, 122
normal vector, 79
numerical integration, 100
numerical integration in Rn, 112

oblique numbering, 42
order of the error, 31
overrelaxation, 167

Péclet number, 36
parabolic, 14, 15
parameterization, 4
partial differential equations, 1
penalty approach, 150
perturbation, 57, 62
Petrov-Galerkin method, 126
Petrov-Galerkin upwinding, 126
Picard iteration, 189
piecewise linear, 98
piecewise polynomial, 98
pivoting, 156
pivots, 156
planar stress, 62
plane stress, 23, 77
Poincaré, 10
Poisson’s constant, 24
Poisson’s equation, 14, 17, 20, 40, 97, 108,

145
Poisson’s ratio, 78
porous media, 229
positive definite, 29, 88, 171
positivity, 83
postprocessing, 107
potential, 20
potential energy, 7, 69, 217
potentials, 3
preconditioned CG algorithm, 174
preconditioner, 162, 188
preprocessing, 107
profile, 158
profile method, 154, 158, 160
prolongation, 183
pseudo-temperature, 264

quadratic elements, 135
quadratic interpolation, 135
quadratic triangles, 136
quadratic triangles, curved , 142
quadratic triangles, straight, 135
quasi-linear PDE, 15

radiation boundary conditions, 60
radiation coefficient, 55
reference pressure, 68
reference temperature, 55, 62
region of determination, 226
region of influence, 227, 231
regular splitting, 164
remeshing, 262
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residual, 162
restriction, 183
reversed Cuthill-McKee, 161
Riesz’ representation theorem, 88
Ritz’s method, 1, 91
Robin, 16
rotating cone, 130
rough part, 183

second divided difference, 28
self-adjoint, 88
SGA, 126
Simpson’s rule, 100, 136
singularly perturbed problems, 36
smooth part, 183
smoother, 183
Sobolev space, 89
solenoidal, 3
solution space, 120
spectral radius, 163
square integrable, 80
staggered grid, 63
standard iteration, 162
start value, 162
steady state, 217
Stefan problem, 255
Stokes equations, 66, 143
strain, 24
strain-displacement relation, 78
stream line upwinding, 128
stress tensor, 22, 63
strong solution, 89
strongly elliptic, 82
subdivision into triangles, 109
subinterval, 28
super solution, 47
SUPG, 126
symmetry, 83

target space, 91
Taylors formula, 28
test function, 80, 120
test space, 126
the transport equation, 229
time-dependent problems, 17
transformation matrices, 58
transient behavior, 14
transversal vibrations, 17
trapezoid rule, 100
truncation error, 28
two component field, 62
two grid algorithm, 183

unconditional stability, 212

underrelaxation, 167
unique solution, 15
uniqueness, 17
upper triangular matrix, 156
upwind differencing, 38

varying coefficients, 14
vector field, 4
vector space, 88
vertical numbering, 42
Von Neumann, 30, 233

wave equation, 14, 15, 215
wave front method, 160
weak formulation, 69, 80, 119
weak solution, 89
weighted gradients approach, 268
well-posedness, 197
wiggles, 37

Z-matrix, 45
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