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Preface

Prerequisites

This book was written to accompany the lectures of the M.Sc. course ME45203:
Electrolysers, Fuel Cells and Batteries at Delft University of Technology. Its main
aim is to create an understanding of the mathematical description of the relationship
between current and voltage in electrochemical devices. A solid background in
physical transport phenomena is assumed, while some training in electrochemistry,
batteries or fuel cells is highly beneficial. When this is lacking, reading and re-reading
the first chapter before continuing with the other chapters may be advisable.

Reader guidelines

Important equations will be boxed

𝑗⊥ = 𝑗∗
(
e𝜂/𝑏a − e−𝜂/𝑏c

)
. (1)

We will indicate logical steps that are important but perhaps not immediately obvious,
and may require one or a few lines of derivation, with the blue “exercise figure”:

. The student is encouraged to work out these steps independently. Footnotes,
appendices, and sections denoted with * are optional additional reading material
and are not part of the curriculum of ME45203.

Content

The first three chapters of the book explore the fundamental concepts related to elec-
trochemistry, transport, and porous electrodes, respectively. The final four chapters
are named after particular applications: batteries, fuel cells, electrolysers, and redox
flow batteries, respectively. However, from the perspective of analytical modelling,
there are more similarities than differences between these devices, so these chapters
focus on those aspects that are distinctively associated with these applications. For
batteries, treated in chapter 4, a distinctive feature is that their porous electrodes are
involved in the reaction as products or reactants. Chapter 5 on fuel cells focuses on
the management of water produced in the reaction. This includes how to model the
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multiphase flow in diffusion layers or gas diffusion electrodes and inside a flooded
catalyst layer. While these aspects are perhaps most often associated with fuel cells,
they can be equally important for e.g. proton exchange membrane electrolysers or
CO2 electrolysers. In chapter 6 on electrolysers we examine the effects of gas bubbles.
Contrary to the previous chapters, the direction normal to the current is modelled
here. Finally, in chapter 7 on redox flow batteries, both directions parallel and normal
to the current are considered in a quasi-two-dimensional model that considers the
flow of reactants through a flow field.
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Nomenclature

Dimensionless variables
𝑐 Concentration 𝑐/𝑐0

B Bruggeman’s coefficient in 𝜏2 ≈ 𝜖−B

E Electrode effectiveness factor
�̄� Electrolyte potential 𝐹𝜙/R𝑇
r Reaction order
𝑠 Liquid water saturation
S Transfer coefficient, inverse mass transfer resistance
SoC State of charge
t𝑖 transference/transport number of ion 𝑖
𝑋 Conversion (𝑐in − 𝑐out)/𝑐in

z Ion charge number

Constants
𝑒 Elementary charge 1.602176634 · 10−19 [C]
𝐹 Faraday constant 96485.3329 [C/mol]
𝑘B Boltzmann constant 1.38064852 · 10−21 [J/K]
𝑁A Avagadro constant 6.02214076 · 1023 [-]
R Gas constant 8.31446 [J/molg/K]

Dimensionless numbers
Gz Graetz number ⟨𝑤⟩𝑙2/ℎ𝐷
M Thiele modulus 1/E → 0
Pe Péclet number ⟨𝑤⟩𝑙/𝐷
Re Reynolds number 𝑤𝑙/𝜈

13
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Sh Sherwood number 𝑁𝑙/𝐷Δ𝑐

Greek variables
𝛼 Charge transfer coefficient [-]
𝛿 Boundary layer thickness [m]
𝜖 Porosity [-]
𝜂 Activation overpotential Φ − 𝜙 −

(
Φ − 𝜙

)
eq [V]

𝛾 Surface tension [N/m]
𝜅 Effective electrolyte conductivity [S/m]
𝜆 Pore size distribution parameter [-]
𝜇 Dynamic viscosity [Pa s]
𝜈 Kinematic viscosity [m2/s]
Φ Electrostatic potential in electrode [V]
𝜙 Electrostatic potential in electrolyte [V]
𝜌 Density [kg/m3]
𝜌𝑞 Charge density [C/m3]
𝜎 Effective electrode conductivity [S/m]
𝜏 Tortuosity [-]
𝜀 Gas fraction [m3

g/m3]
𝜑e Voltage efficiency [-]

Lower case roman
𝑎 Volumetric surface area [m2

s/m3]
𝑏 Tafel slope 𝑅𝑇/𝛼𝐹 [V]
𝑐 Concentration [mol m−3]

𝑐m Cup mixing concentration 1
⟨𝑤⟩𝑙

∫ 𝑙

0 𝑤𝑐𝑑𝑥 [mol m−3]

ℎ Flow channel height [m]
𝑗 Magnitude of total current density [A/m2]
𝑗∗ Superficial exchange current density [A/m2

s ]
𝑘 Areal reaction rate constant [mol1−r s−1 m3r−2]
𝑛 Electrons per reactant/product molecule [mole−/mol]
𝑝 Pressure [Pa]
𝑞 Electric charge [C]
𝑟 Pore radius [m]
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𝑡 Time [s]
𝑥 Coordinate in the direction of the main current [m]
𝑦 Coordinate normal to 𝑥 and 𝑧 [m]
𝑧 Coordinate parallel to flow, normal to main current [m]
z Charge number 𝑞/𝑒 [-]

Mathematical operators
cosh 𝑥 Hyperbolic cosine 1

2 (e𝑥 + e−𝑥)
ln 𝑥 Natural logarithm eln 𝑥 = 𝑥

sinh 𝑥 Hyperbolic sine 1
2 (e𝑥 − e−𝑥)

tanh 𝑥 Hyperbolic tangent sinh 𝑥/cosh 𝑥

Notation
′ A spatial derivative 𝑑/𝑑𝑥 (𝑑/𝑑�̄� dimensionless)
¯ Overbars denote dimensionless quantities
Δ Difference right minus left, or after minus before
�̂� Unit vector, normal to a surface into the fluid
⟨.⟩ Spatial average, 1

𝑥

∫ 𝑥

0 .𝑑𝑥 or 1
𝑧

∫ 𝑧

0 .𝑑𝑧 in one dimension

𝐷/𝐷𝑡 Material derivative 𝜕
𝜕𝑡 + 𝒖 · ∇

opt Optimised for energy efficiency

Subscripts
⊥ Normal to a surface, into the fluid
∥ Parallel to particle/parcel trajectory
𝑖 Species index
𝑥, 𝑦, 𝑧 Vector component in the 𝑥- 𝑦- or 𝑧-direction
+ Positively charged ions, cations
- Negatively charged ions, anions
0,𝐿 At 𝑥 = 0 or 𝑥 = 𝐿

a Anode
c Cathode
cap Capillary
d Discharge/discharged
diff Diffusion (superscript)
eq Equilibrium
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fl Fluid
g Gas
in,out At the inlet 𝑧 = 0 or outlet 𝑧 = ℎ, respectively
l Liquid
lim Limiting
lin Linear
m Molecular / material
mig Migration (superscript)
O Oxidation
opt Optimal with respect to energy efficiency
R Reduction
ref Reference
s Solid/Surface
tn Thermoneutral
tot Total

Upper case roman
𝐴 Projected electrode area [m2]
𝐴𝑅 Areal resistance [Ωm2]
𝐶𝑝 Heat capacity, at constant pressure [J kg−1 K−1]

𝐷 Effective diffusion coefficient [m2 s−1]
𝐸 Electrode potential [V]
Ea Activation energy [J]
𝐺 Gibbs free energy [J/mol]
𝐼 Current [A]
𝐽∗ Total superficial exchange current density 𝑎𝐿𝑗∗ [A/m2]
𝐽𝜅 Characteristic current density 𝑏𝜅/𝐿 [A/m2]
𝑙 Flow channel thickness [m]
𝐿 Electrode thickness [m]
M Mobility, 𝑢/𝐹 in equilibrium [s/kg]
𝑀 Molar mass [kg mol−1 ]
𝑁 Molar flux [mol m−2 s−1]
𝑅 Radius of a particle or bubble [m]
𝑆 Source term [something/m3/s]
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𝑇 Temperature [K]
U Potential energy [J]
𝑉 Voltage [V]
V Volume [m3]
Vm Molar volume 𝑀/𝜌 [m3/mol]

Vectors
𝑨 Area, normal to surface [m2]
𝑬 Electric field [V/m]
𝑭 Force [N]
𝑰 Current [A]
𝒊 Electronic current density [A m−2]
𝒋 Ionic current density [A m−2]
𝑵 Molar flux [mol m−2 s−1]
𝑼 Superficial velocity with components𝑈,𝑉,𝑊 [m/s]
𝒖 Interstitial velocity with components 𝑢, 𝑣, 𝑤 [m/s]

Other conventions
1. The cathode is the electrode at which the reduction takes place and oxidation

occurs at the anode.

2. Cell potentials are that of the cathode minus that of the anode 𝐸cell = 𝐸c − 𝐸a,
so positive for Galvanic cells and negative for electrolytic cells.

3. We will draw the cathode on the right and anode on the left.

4. Surface local fluxes 𝑁⊥ and 𝑗⊥ are always directed from the solid surface into
the electrolyte, so 𝑗⊥ is positive on the anode and negative on the cathode.

5. Since anodic currents are positive, the overpotential will also be positive on the
anode, and negative on the cathode.

6. Tafel slopes 𝑏 will be used on an e-folding basis, rather than per decade.

7. The number of electrons 𝑛 > 0 transferred in the reaction O + 𝑛e−→R; per
number of reactant or product molecules as indicated.
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Chapter 1

Electrochemistry

This introductory chapter constitutes a refresher of the basic electrochemical terminology
and notation necessary for the subsequent chapters. In this chapter, the basic foundations
are laid in terms of electrostatics, equilibrium thermodynamics, and electrochemical kinetics
culminating in a simplified cell model.

1.1 Electrostatics
An electric charge 𝑞 [C] in an electric field 𝑬 [V/m] experiences an electrostatic force

𝑭 = 𝑞𝑬. (1.1)

Since this is a conservative force, the electric field can be expressed in terms of an
electrostatic potential 𝜙 as

𝑬 = −∇𝜙. (1.2)

Combining these two equations we get 𝑭 = −𝑞∇𝜙, where we see that a positive
charge moves down along a potential gradient, while a negative charge moves up in
potential. The electric potential energy of a charge is the negative of the work done
by an electric field in moving the charge within such a field

U = −
∫

𝑭 · 𝑑𝒙 = 𝑞Δ𝜙, (1.3)

whereΔ𝜙 is 𝜙 at the end minus the start of the path that the charged particle traverses.
Positively charged particles thus increase their potential energy when the potential
increases, while negatively charged particles increase their potential energy when
the potential decreases. Note that in all these equations only differences in potential,
termed voltages, are physically relevant.
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1.2 Current and resistance
When thinking of conduction and current we usually think about the movement
of electrons. While this is most relevant inside metals, electrochemistry is also
concerned with the flow of charged molecules, or ions. Media that conduct ions are
called electrolytes. In general, we can define current as the flow of charge, regardless
of whether the charge carriers are electrons, ions, or other charged particle. The
movement of ion charge in the form of a current 𝐼 [C/s=A] through an area 𝐴
constitutes a current density 𝑖 [A/m2]

𝑖 =
𝐼

𝐴
. (1.4)

Since the flow of ions is not constrained to any preferential direction, in general,
the ionic current density 𝒊 is a vector field that can have a different direction and
magnitude at each location.

Often, there is an approximate proportionality between the current density 𝒊 and
the electric field, expressed through1

𝒊 = 𝜅𝑬. (1.5)

In the next chapter, we will get into why this is often the case and also when it
does not hold. The constant of proportionality is the conductivity 𝜅 [S/m = Ω−1m−1],
which is the inverse of the resistivity. These material properties depend strongly
on the charge carrier and physical parameters, such as temperature, and can differ
widely between materials. Metals, for example, typically conduct electrons very
well. Aqueous salt solutions, on the other hand, are typically insulating for electrons
but conduct ions well. We will refer to such ionic conductivity with the symbol 𝜅,
while reserving the symbol 𝜎 for the conductivity of a material towards electrons.
When speaking of conductivity, it is therefore important to specify with respect to
what particle. We will also use a different symbol 𝒋 for the electronic current density
so that Ohm’s law for electrons reads 𝒋 = 𝜎𝑬. Since the ionic current is converted
to electronic at the electrode, charge conservation gives 𝑗 = 𝐼/𝐴 as well. We will
typically use the symbol 𝑗 for the current density unless explicitly referring to the
current density magnitude inside the electrolyte.

Referring to Figure 1.1, we consider the case in which there is a difference in
potential ∆𝜙 ≡ 𝜙 (𝐿) − 𝜙 (0) < 0 between the back and front of a block of material
of thickness 𝐿. The average electric field strength in the 𝑥-direction is obtained by
integrating Eq. (1.2) to give 𝐸𝑥 = −∆𝜙/𝐿, which after inserting in Eq. (1.5) gives the
positive current density in the 𝑥-direction,

𝑖𝑥 = −
𝜅∆𝜙
𝐿

(1.6)

1This is the continuum formulation of Ohm’s law.
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𝐴

𝐿

𝑖 = 𝐼
𝐴

𝜅 𝑉 = |Δ𝜙 |

0
𝑥

Figure 1.1: A schematic to illustrate Ohm’s law 𝑉 = 𝐼𝑅 and Pouillet’s law 𝑅 = 𝐿/𝜅𝐴 in a
planar domain with ion conductivity 𝜅.

Multiplying with the area 𝐴 and taking the absolute value with 𝐼 = |𝑖𝑥 |𝐴 and
𝑉 = |Δ𝜙 | we obtain

𝐼 =
𝑉

𝑅
, where 𝑅 =

𝐿

𝐴𝜅
. (1.7)

The first of these equations is Ohm’s law, while the second is referred to as Pouillet’s
law. The latter relates resistance to geometry and the material property 𝜅 in a
logical way. The larger the distance ions have to travel or the lower the electrolyte
conductivity, the larger the resistance. The area appears only because we introduced
the current. Dividing Eq. (1.7) by the area 𝐴, we obtain an expression for the current
density magnitude:

𝑖 =
𝑉

𝐴𝑅
, where 𝐴𝑅 =

𝐿

𝜅
(1.8)

Here the area-specific resistance (ASR) 𝐴𝑅 [Ωm2] may be viewed as a separate new
symbol or as the product of area and resistance.

Since the rate at which a desirable product is made in an electrochemical device
scales with the current 𝐼, and the cost of electrodes, membranes, etc. scale with area𝐴
the ratio 𝑗 = 𝐼/𝐴, the current density, is a good performance metric. Electrochemical
processes are usually only commercially attractive above a certain current density. A
high current density allows for a large amount of product to be made per unit area
of the cell components used.

On the other hand, the potential drop 𝑉 has to be maintained by a power source,
for which the power consumption is given by 𝑃 = 𝐼𝑉 [W].

Often, a balance has to be found between maximising the current density 𝑖 and
minimising the required potential drop 𝑉 . From Eq. (1.8), minimising the area-
specific resistance is therefore crucial. This means that the distance 𝐿 that the charge
has to travel has to be as small as possible, through a medium with conductivity as
large as possible. Therefore, electrodes have to be positioned as close together as
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𝑉cell

Anode
oxidation
(of reductant)
Electrons out

e−𝑰 , 𝑬

Electrode
electrons

𝒊 , 𝑬

Electrolyte
conducts ions

Membrane / Diaphragm

Cathode
reduction
(of oxidant)
Electrons in

Figure 1.2: A schematic of a general electrochemical cell. Often, but not always, the anode
is depicted on the left and the cathode on the right. Electrons move through a metal from the
anode, where the oxidation reaction takes place, to the cathode, where reduction occurs.

possible. For this reason, electrodes are often directly placed next to a gas-separating
membrane, in a zero-gap configuration or membrane-electrode assembly (MEA).

1.3 An electrochemical cell
A typical electrochemical cell, schematically shown in Figure 1.2, consists of at least
the following functional parts:

1. An electric connection (𝜅 = 0, 𝜎 ≠ 0) between the electrodes via a power source
or load

2. An electrolyte, conducting ions but not electrons (𝜅 ≠ 0, 𝜎 = 0)

3. Two electrodes, an anode and a cathode. The function of the electrodes is two-
fold: they should conduct electrons and be catalytically active for the desired
reaction.2 Only in the case of batteries does the electrode material itself actually
participate in the reaction. In this case, the reaction stalls when the electrodes
are used up.

1.3.1 Redox reactions
The reactions taking place at electrodes are redox (reduction-oxidation) reactions in
which electrons are transferred

2Sometimes these functions of an electrode are split, in which case there is a catalyst support and a
catalyst layer, for example in the form of spray-coated catalyst nanoparticles.
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1. Reduction takes place at the cathode3, where an electron (e−) is transferred to
an oxidant (O)

2. Oxidation takes place at the anode, where an electron is transferred from a
reductant (R)4

Such a reaction can be schematically depicted as

O + 𝑛e− ↔ R. (1.9)
We will consider the stoichiometric coefficient 𝑛 to be a positive integer and will
use it somewhat flexibly to denote the total number of electrons transferred in a
redox reaction, or, depending on the context, the number of electrons per reactant or
product molecule, respectively.

The reactants may be solids, as in the case of batteries. Alternatively, reactants
may be dissolved in a liquid electrolyte, or the liquid itself may be the reactant, for
example, in a water electrolyser or in various redox flow batteries. Finally, gases may
also be brought in contact with the electrodes as in the case of fuel cells.

Figure 1.2 shows the anode on the left and the cathode on the right, a convention
we will adhere to in this book but is not always followed in the literature. Electrons
generated in an oxidation reaction at the anode move through the external circuit
to the cathode where the reduction reaction takes place. To avoid negative charge
accumulation at the cathode, negative ions (anions) move back through the electrolyte
to the anode. Alternatively, positive ions (cations) move from anode to cathode. Either
way, an electric field is set up and directed from the anode to the cathode to transport
this charge.

1.3.2 Thermodynamics
Electrochemists often use the symbol 𝐸 to denote the potential of an electrode.5 We
hope that this will cause no confusion with the magnitude of the electric field.

Neglecting ohmic losses in the external circuitry and the electrodes for now, the
cell voltage 𝑉cell reads

𝑉cell = 𝐸c − 𝐸a , (1.10)

3To avoid renaming an electrode depending on whether a battery is charging or discharging, for a
battery this naming convention only holds during discharging. During charging the oxidation reaction
takes place at the cathode.

4Other terms for an oxidant are oxidiser/oxidising agent/electron acceptor. Other terms for a reductant
are reducer/reducing agent/electron donor. Reduction refers to a reduction in charge, so the addition of
electrons. Some chemists may insist it is rather the oxidation state or oxidation number that is reduced.
This hypothetical charge is usually +1 for hydrogen, -2 for oxygen. The sum of oxidation states of a
molecule equals its charge, in units of electron charge, which is called the charge number or valence.

5This notation derives from the electromotive force (EMF), a term used to describe the transformation
from a different type of energy (like chemical bonding energy) to electrical energy. Electrode potentials are
actually voltages since they are measured relative to some reference electrode; see the optional section 1.3.4
for more information. Sometimes the terminology cell potential is used, for which we will consistently
use cell voltage.
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where the subscripts 𝑎 stand for anode and 𝑐 for cathode, respectively. If we switch
off the current, the oxidation and reduction reactions proceed at an equal rate at the
equilibrium cell voltage 𝑉eq = 𝑉c,eq − 𝑉a,eq.6 From equilibrium thermodynamics, it
follows that the amount of useful work that can be done at constant temperature
and pressure is given by (minus) the Gibbs free energy [J] of the reaction. Per mole
of product [molp] we will denote this as −∆𝐺 [J/molp]. Upon slightly opening the
circuit, an infinitesimal amount of current will run that does electrical work, given
by Eq. (1.3) as 𝑞𝑉eq [J].

For one mole of product, we convert a charge 𝑞 = 𝑛𝐹, with 𝑛 [mole−/molp]
here representing the number of moles of electrons per mole of product. Here, 𝐹 ≈
96485 C/mole− is Faraday’s constant, which gives the charge of a mole of electrons.7
Combining this gives

∆𝐺 = −𝑛𝐹𝑉eq. (1.11)

1. Spontaneous reactions have ∆𝐺 < 0, so such galvanic or voltaic cells have 𝑉eq >
0.8

2. Non-spontaneous reactions have ∆𝐺 > 0, so such electrolytic cells have 𝑉eq < 0.

Besides useful work, at a finite current, there are also various types of losses. For
example, the collisions of electrons and ions result in resistive heating. In defining
energy efficiency, we will compare the total energy consumption by the cell to the
amount of useful work.

For a galvanic cell the useful work that can be done per mole of product is
−∆𝐺 = 𝑛𝐹𝑉eq, while dissipation lowers the cell voltage to 0 < 𝑉cell < 𝑉eq, leaving
𝑛𝐹𝑉cell for useful work. Hence we define the energy efficiency or voltage efficiency
as

𝜑e =
𝑉cell
𝑉eq

. (1.12)

For an electrolytic cell, dissipation makes that a more negative cell voltage 𝑉cell <
𝑉eq < 0 is needed to drive a current. Hence, the voltage efficiency, in this case, reads

𝜑e =
𝑉eq

𝑉cell
. (1.13)

6This open-circuit voltage (OCV) may be different when side-reactions like corrosion determine the
cell voltage. Here we consider that an equilibrium of the desired reactions prevails.

7With 𝑒 = 1.602(..) · 10−19 C the elementary charge and 𝑁A Avogadro’s number, or the number of
particles in a mole, we have 𝐹 = 𝑒𝑁A.

8This is a consequence of the second law of thermodynamics that states that the entropy of the universe
increases. We have Δ𝐺 = Δ𝐻 −𝑇ΔS where ΔS > 0 is the entropy increase in the reaction and Δ𝐻/𝑇 > 0 is
entropy decrease of the environment due to heat and work. The Gibbs free energy, therefore, gives the total
entropy decrease, which is negative for a spontaneous process. For a non-spontaneous process, it can be
positive, but this requires an entropy increase elsewhere in the system.
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1.3.3 Example: alkaline water electrolysis *
As an example, we consider in this section the reactions taking place in an alkaline
water electrolyser producing hydrogen and oxygen. The word alkaline here refers to
a pH>7. Note also that this process is named water electrolysis, for the reactant, rather
than for the products hydrogen and oxygen. The overall reaction 2H2O→2H2+O2,
proceeds through two redox reactions. The reduction reaction at the cathode, the
hydrogen evolution reaction (HER), reads

2H2O + 2e−→H2+2OH−. (1.14)

The pre-factors for each term in this reaction are called stoichiometric coefficients.
The hydrogen gas forms bubbles that leave the electrolyte. Hydroxide ions (OH-)
take over the transfer of current from electrodes and move to the anode, where they
take part in the oxidation reaction, the oxygen evolution reaction (OER):

4OH−→4e−+O2+2H2O. (1.15)

At the anode, the current is continued by transport of electrons in the electrodes.
A power source closes the circuit and gives the electrons enough Gibbs free energy to
participate in the reactions. Note that water is consumed at the cathode but formed
at the anode. However, of course, more water molecules are consumed at the cathode
than are produced at the anode so that, overall, water is consumed. The equilibrium
voltage of the water electrolysis reactions

𝑉eq = −∆𝐺
𝑛𝐹
≈ 237 kJ/mol

2 · 9.65 · 104 C/mol
≈ 1.23 V. (1.16)

When 𝑉cell ≈ 𝑉eq the process will be endothermic, causing local cooling, which
is resupplied by heat drawn from the environment. This additional heat is taken
into account in the enthalpy of reaction ∆𝐻 = ∆𝐺 + 𝑇∆S. Here ∆S is the entropy of
reaction, associated with the higher entropy of the produced gases compared to those
of the consumed liquid. The cell voltage at which this additional heat is produced
by internal dissipation

𝑉tn = −∆𝐻
𝑛𝐹
≈ 286 kJ/mol

2 · 9.65 · 104 C/mol
≈ 1.48 V, (1.17)

is called the thermoneutral voltage. At higher voltages, the process becomes exothermic,
as more heat and entropy are produced than is required for the reaction. To create
gaseous hydrogen and oxygen bubbles requires a further small heat/enthalpy of
vaporisation.

The equilibrium voltage of Eq. (1.16) at standard conditions can be found in tables
of standard electrode potentials, like Table. 1.1 in the next section. The energies of
reaction ∆𝐺 and ∆𝐻 are referred to as the lower and higher heating values, respec-
tively. In the combustion of hydrogen, this difference arises due to the additional
energy required to vaporize the product water.
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Often, instead of ∆𝐺 as was used in Eqs. (1.12) and (1.13), ∆𝐻 is used to define the
energy efficiency of water electrolysis. In this way of bookkeeping, only the electrical
energy is used for the minimum required energy, and the required heat is assumed
to be freely available. This makes for a maximum efficiency ∆𝐻

∆𝐺 ≈ 118%, that can
be reached for the non-spontaneous reaction, by using heat from the environment.
For the spontaneous reactions of hydrogen and oxygen in a fuel cell, the reverse of
Eqs. (1.14) and (1.15), on the other hand, a maximum efficiency of ∆𝐺

∆𝐻 ≈ 85% can be
reached. The generated heat is then discarded as not being useful enough to con-
tribute to energy efficiency. This reasoning has some logic, although so does having
100% as a maximum efficiency.9

Note that, however we define it, at low enough current density the reactions can,
in theory, be performed back and forth with 100% efficiency in an electrochemical cell.
This is in stark contrast with the energy efficiency of producing work from the heat
released in burning hydrogen, which is limited by the Carnot efficiency. Therefore,
at ambient or moderate temperatures, the energy efficiency of electrochemical cells
easily beat their mechanical equivalents.

1.3.4 Reduction potentials *
An electrode potential 𝐸 is defined as the cell voltage 𝐸right−𝐸left,SHE measured when
the left electrode is a reference electrode, often a standard hydrogen electrode (SHE).
This is a theoretical, idealised, electrode but can be approximated by bubbling pure
hydrogen past a platinum electrode in an acidic solution at ambient conditions. The
term “standard" here refers to the standard conditions of 25◦C, 1 atm, 1 M of all re-
actants, or actually, to account for non-ideal behaviour, an activity of 1. Electrode
potentials at standard conditions are typically dressed with a superscript 0 (or some-
times ⊖) so that a standard hydrogen electrode has 𝐸0 = 0 by definition. For other
reactions, the standard electrode potentials can be looked up in tables.

These potentials are usually given as reduction potentials; for reduction reactions
examples are shown in Table 1.1

Rows of Table 1.1 can be combined to give new reactions. For example, the final
line follows by subtracting twice the second line from the one before it. Also, the
potential follows from subtracting -0.83 from 0.4 to give 1.23 V. However, this is
fortuitous, as, in general, we have to realise that Gibbs’ free energy can be added in
this way and not the potential. By Eq. (1.11), the factor 𝑛 must be corrected when
adding potentials.

9The EU in its “harmonized protocols for testing of low temperature water electrolysis” advises a
definition also propagated in Ref. [16], which amounts to 𝜑e =

𝑉tn
𝑉cell+𝑉tn−𝑉eq

. Note that in this definition
too, the maximum cannot exceed 100 %.
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Reduction reaction 𝐸0 [V]
Li+ + e− → Li -3.04

2H2O + 2e− → H2 + 2OH− -0.83
2CO2 + 2H+ + 2e− → CO +H2O -0.52

2H+ + 2e− → H2 0
O2 + 2H2O + 4e− → 4OH− 0.4
O2 + 4H+ + 4e− → 2H2O 1.229

Table 1.1: An example list of reduction reactions and their reduction potentials. All values
are relative to SHE.

1.4 Kinetics
We conclude this chapter in section 1.5 with a simple cell model relating the cell
voltage 𝐸cell to the current density 𝑗 and various geometrical and material parameters
of the cell. Two important elements, the equilibrium voltage𝑉eq and the ohmic losses
𝐼𝑅 have already been described. In this section, we introduce a final important
ingredient, the activation overpotential.

1.4.1 Faraday’s law
Consider a redox reaction taking place at an electrode. Such a surface reaction is
called a heterogeneous reaction because of the two or more phases involved. We will
use a normal-to symbol ⊥ to denote vector components of the molar flux normal to
this surface in the direction away from the surface into the fluid:

𝑁⊥ = �̂� · 𝑵 (1.18)

Here 𝑵 is the molar flux [mol/m2/s] and �̂� is a unit normal vector directed into the
electrolyte. Since reactants move towards the electrode surface in the −�̂�-direction,
𝑁⊥ [mol/m2/s] is negative for reactants. Product fluxes are always positive because
products move away from the electrode in the direction of �̂�.

In the case of the redox reaction of Eq. (1.9), for each mole of products made
or reactants consumed, 𝑛 mole of electrons are used. This proportionality between
charge and product flux is referred to as Faraday’s law and can be expressed as

𝑗⊥ = 𝑛𝐹𝑁⊥,O , (1.19)

This equation relates the molar flux 𝑁⊥,O of oxidants to the charge flux 𝑗⊥ = �̂� · 𝒋,
or current density. A positive local current density 𝑗⊥ is directed from the electrode
into the electrolyte. In a reduction reaction, oxidants move towards the electrode so
that 𝑁⊥,O < 0 and 𝑗⊥ < 0, so cathodic currents are negative. Conversely, in an oxidation
reaction oxidants move away from the electrode so that 𝑁⊥,O > 0 and 𝑗⊥ > 0, so
anodic currents are positive.
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𝑗⊥c < 0𝒋𝒋
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Figure 1.3: The local electronic current density 𝒋⊥, product flux 𝑵 , ionic current density 𝒊,
and wall-normal unit vector 𝒏.

1.4.2 Activation energy
To have a chemical reaction proceed at a significant rate, an activation energy Ea
[J/mol] usually has to be supplied. This additional energy that molecules should
have to overcome the reaction energy barrier is schematically depicted in Figure 1.4.
This schematic shows a spontaneous reaction, for which the Gibbs free energy of
reaction ∆𝐺 < 0. The energy of the molecules in their final state is below that of the
energy of their initial state.

This activation energy is associated with overcoming repulsive interactions be-
tween the reactants before the attractive binding energies can take over. The activation
energy can be lowered using a suitable catalytic surface. The right catalyst binds the
reactant not too strongly but neither too weakly and may also align the reactants for
the reaction in order to proceed more easily. This results in a lower activation energy
barrier, as is illustrated with the dashed blue curve in Figure 1.4.

Consider a reaction at the surface of an electrode, immersed in a liquid electrolyte.
For many reactions, the product flux 𝑁⊥ [mol/m2/s] can approximately be written
as

𝑁⊥ = 𝑘𝑐r, (1.20)

where 𝑐 [mol/m3] is the reactant concentration, 𝑘 [mol1−r s−1 m3r−2] the reaction
rate constant and r is the reaction order. For first-order reactions r = 1 and the
reaction rate is proportional to the reactant concentration. The rate constant often
approximately satisfies the semi-empirical Arrhenius equation

𝑘 ∝ e−
Ea
R𝑇 . (1.21)

Here, Ea
R𝑇 is the ratio between the activation energy and the characteristic kinetic

energy R𝑇 for a mole of reactants.10 The higher the temperature, the larger the
kinetic energy of the reactants, and the faster the reaction proceeds. This is the
reason that chemical reactors typically operate at high temperatures. They often also
operate at a high pressure to increase the concentration 𝑐 of gaseous or dissolved
reactants, further increasing the reaction rate. Finally, often a catalyst helps to lower
Ea. These are the main means available to accelerate chemical reactions.

10The characteristic kinetic energy per particle is 𝑘B𝑇, with 𝑘B the Boltzmann constant. The gas constant
can be written as R = 𝑁A𝑘B, with 𝑁A Avogadro’s constant.
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potential energy

Ea

Δ𝐺

reaction coordinate

Figure 1.4: The activation energy Ea "barrier" for a spontaneous reaction (∆𝐺 < 0) to
proceed from left to right along the reaction coordinate, which may be seen as a re-scaled time
coordinate. For a chemical reaction, the height of this barrier can be lowered using a better
catalyst (dashed curve).

Electrochemical reactions, however, have an additional “knob" that can be used to
speed up a reaction, which allows them to proceed rapidly even at low temperatures
𝑇 ≪ Ea/R. This has to do with the potential energy of Eq. (1.3). By lowering the
potential of the cathode 𝐸c, the potential energy of electrons is increased. The most
energetic electrons, at the Fermi energy, can then transition to a lower energy state by
participating in a reduction reaction.

Similarly, by increasing the anode potential 𝐸a relative to the potential 𝜙 of the
adjacent electrolyte,11 The potential energy of electrons in the anode is lowered. This
facilitates electrons from oxidation reactions near the surface to enter the anode.
As argued by a geometrical argument in the caption of Figure 1.5 an increase 𝐸 in
electrode potential relative to that of the electrolyte lowers the activation energy for
an oxidation reaction by adding −𝛼O𝐹

(
𝐸 − 𝜙

)
.12

Here, the charge-transfer coefficient 𝛼O for the oxidation reaction is typically
around ½, and adds up to unity when combined with that for the reverse reduction
reaction:

𝛼O + 𝛼R = 1. (1.22)

We consider a first-order, single-electron transfer oxidation reaction so that 𝑛 =

r = 1. As argued above, an increase in the anode potential 𝐸 will decrease the
activation energy Ea by adding −𝛼O𝐹

(
𝐸 − 𝜙

)
. Inserting into Eqs. (1.19), (1.20) and

11We take here the electrostatic potential in the electrolyte, measured using an electrode made of the
same material as that used to measure the electrode potential. The measurement position should be very
close to the electrode to exclude any ohmic drops or concentration differences over the distance to the
electrode. So, it should be well within any diffusion layer thickness, but we consider it outside the electric
double layer (EDL). At high electrolyte concentrations, this layer can be as thin as a few molecules, much
smaller than the continuum scales considered in this book.

12If you have never seen this derivation before, the present exposition may be too short to appreciate the
intricacies involved. In that case, you are recommended to study Fig. 1.5 and its caption in detail and/or
consult electrochemistry textbooks like [3]. However, the details here will not be crucial to appreciate and
apply the final results, so you may also skim over some technicalities.
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−𝐹

(
𝐸 − 𝜙

)

𝛼R𝐹
(
𝐸 − 𝜙

)−𝛼O𝐹
(
𝐸 − 𝜙

)

−𝐹
(
𝐸 − 𝜙

)
Figure 1.5: Left: a schematic depiction of the energy landscape for a general single-electron
transfer redox reaction 𝑎A+ e− → B. The 𝑥-axis is a reaction coordinate, which may be seen
as a sequence of reaction steps like adsorption, reorientation of molecules, the breakup of bonds,
etc. Heuristically, it may also be seen as a re-scaled spatial coordinate from the anode into the
electrolyte. The energy barrier of Figure 1.4 is decreased by increasing the potential 𝐸 of the
metal electrode relative to the electrolyte 𝜙. This would lower the potential energy of electrons,
accelerating oxidation reactions. Right: the activation barrier is approximated by two lines
under an angle. Lowering the left line while keeping the right one fixed increases the peak by
𝛼R𝐹

(
𝐸 − 𝜙

)
as seen from the left but decreases it by −𝛼O𝐹

(
𝐸 − 𝜙

)
as seen from the right.

This decrease makes it easier for electrons to move to the left into the electrode, accelerating
the oxidation reaction. Since these changes add up to −𝐹

(
𝐸 − 𝜙

)
we have 𝛼O + 𝛼R = 1. The

exact values depend on the angle between the two lines, but 𝛼O = 𝛼R = 1/2 for a symmetric
peak.
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Eq. (1.21) gives for the positive anodic current

𝑗⊥ = 𝑘O𝐹𝑐e
𝛼O𝐹(𝐸−𝜙)

R𝑇 , (1.23)

where the oxidation rate constant 𝑘O ∝ e−Ea,O/R𝑇 . Simultaneously, reduction reac-
tions will also take place at the anode, but at a much lower rate than the oxidation
reactions. An increase in anode potential 𝐸 will increase the activation energy Ea
by adding 𝛼R𝐹

(
𝐸 − 𝜙

)
. Inserting this into Eqs. (1.19), (1.20) and Eq. (1.21) adds a

negative reduction current so that

𝑗⊥ = 𝑘O𝐹𝑐Re
𝛼O𝐹(𝐸−𝜙)

R𝑇 − 𝑘R𝐹𝑐Oe−
𝛼R𝐹(𝐸−𝜙)

R𝑇 . (1.24)

At the anode, the first term will be referred to as the “forward” reaction and will
exceed the second “reverse reaction” term so that 𝑗⊥a > 0. At the cathode a similar
expression will hold, although the kinetic parameters 𝑘O, 𝑘R, 𝛼O, and 𝛼R will gen-
erally be different when different cathode materials are used. At the cathode, the
second term in Eq. (1.23) will dominate giving 𝑗⊥c < 0. Note that for smooth planar
electrodes, by charge conservation 𝑗⊥a = −𝑗⊥c = 𝑗.

1.4.3 Current-overpotential relations
Nernst equation

Under equilibrium conditions 𝑗⊥ = 0 and Eq. (1.24) gives the single electron transfer
Nernst-equation describing the equilibrium electrode potential

𝐸eq = 𝐸0′ + R𝑇
𝑛𝐹

ln
(
𝑐O,eq

𝑐R,eq

)
, (1.25)

where 𝐸0′ = 𝜙eq + R𝑇
𝐹 ln

(
𝑘R
𝑘O

)
is the formal potential and 𝑛 = 1, since we consider a

single-electron transfer reaction. In 1.A, we consider the more general case of several
reaction steps, which gives again Eq. (1.25), but now with 𝑛, the total number of
electrons transferred in the reaction and a different formal potential. If the reac-
tion is extremely fast, we speak of a reversible or Nernstian process for which this
equilibrium equation can be used.

Butler-Volmer equation

We define the activation overpotential or surface overpotential

𝜂 ≡
(
𝐸 − 𝜙

)
−

(
𝐸 − 𝜙

)
eq (1.26)

as the difference between the potential 𝐸 in the electrode and the potential 𝜙 in the
electrolyte, relative to that same difference in equilibrium. Therefore, under equilib-
rium conditions at zero current, the activation overpotential vanishes by definition.
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You may wonder where in the electrode and in the electrolyte we take these poten-
tials. At the high electrolyte concentrations used in most applications, the change in
electrostatic potential from 𝐸 inside the metal to 𝜙 in the electrolyte takes place over
a distance of the order of a few molecules: the electric double layer (EDL).13

Using Eq. (1.26) in Eq. (1.24), we obtain the Butler-Volmer equation

𝑗⊥ = 𝑗∗

( oxidation︷      ︸︸      ︷
𝑐R
𝑐R,eq

e
𝛼O𝐹𝜂
R𝑇 −

reduction︷        ︸︸        ︷
𝑐O
𝑐O,eq

e−
𝛼R𝐹𝜂
R𝑇

)
. (1.27)

Here the exchange current density 𝑗∗ ≡ 𝑛𝐹
(
𝑘O𝑐R,eq

)𝛼O (
𝑘R𝑐O,eq

)𝛼R .

The Butler-Volmer equation, Eq. (1.27), cannot in general be inverted analytically
to give an exact expression for the overpotential 𝜂 as a function of current density 𝑗⊥.

Tafel equation

A noteworthy case in which an explicit expression for the overpotential can be
obtained is when one of the exponentials dominates. When 𝑗⊥ ≫ 𝑗∗ or 𝜂 ≫
R𝑇
𝐹 ln

(
𝑐O
𝑐O,eq

𝑐R,eq
𝑐R

)
, the oxidation reaction dominates over the reduction reaction and

we obtain the Tafel equation

𝑗⊥ = 𝑗∗
𝑐R
𝑐R,eq

e𝜂a/𝑏a . (1.28)

Solving for 𝜂 gives the concentration-dependent Tafel equation

𝜂a = 𝑏aln
(
𝑗⊥
𝑗∗

𝑐R,eq

𝑐R

)
. (1.29)

Here the anodic Tafel slope 𝑏a ≡ R𝑇/𝛼O𝐹 is around 0.05 V at ambient temperature
when 𝛼O = 1/2. This means that as long as 𝑐R ≈ 𝑐R,eq we can increase the current by an
order of magnitude with an anodic activation overpotential of only 𝜂a = 𝑏a ln (10) ≈
120 mV14.

13This thin region near any surface in an electrolyte consists of a layer of ions that are chemically
adsorbed to the surface and a layer of ions of opposing charge that are attracted to this surface charge.
Hence the name electric double layer. This second layer screens the surface charge over the Debye length
and is at relevant electrolyte concentrations ≲ 1 nm thick. It is also sometimes called the diffuse layer.
This is not to be confused with the diffusion layer. This boundary layer where diffusion dominates over
advection, typically 10 − 100 µm, is many orders of magnitude thicker.

14Tafel slopes are often reported in this way, per decade rather than per e. If this is the case, the value
mentioned in the literature has to be divided by ln (10) ≈ 2.3 to obtain Tafel slopes as defined here.
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𝑗⊥
𝜂

− ln 𝑗∗

𝑑𝜂
𝑑 ln−𝑗⊥ = 𝑏c

𝑑𝜂
𝑑 ln 𝑗⊥ = 𝑏a

𝜂 ln 𝑗⊥ln 𝑗∗

Figure 1.6: A plot of current density 𝑗⊥ versus activation overpotential 𝜂 as described by the
concentration-independent Butler-Volmer equation 𝑗⊥ = 𝑗∗

(
e𝜂/𝑏O − e−𝜂/𝑏R

)
on a linear scale

(left) and a lin-log plot with the logarithm of the current density on the 𝑥-axis (right). From
this latter Tafel plot, the Tafel slopes 𝑏O = R𝑇

𝛼O𝐹
and 𝑏R = R𝑇

𝛼R𝐹
can be obtained as the slope of

the linear sections. The intercept with the horizontal axis gives the exchange current density
𝑗∗.

Concentration overpotential

Using ln 𝑎𝑏 = ln 𝑎 + ln 𝑏 we can write Eq. (1.29) as

𝜂a =

surface overpotential︷     ︸︸     ︷
𝑏aln

(
𝑗⊥
𝑗∗

)
+

concentration overpotential︷         ︸︸         ︷
𝑏a ln

(
𝑐R,eq

𝑐R

)
. (1.30)

The surface overpotential is independent of concentration and describes purely ki-
netic activation losses.15 The second part, the concentration overpotential, increases
as the reactant concentration 𝑐R decreases.

Similarly, we obtain for the reverse reduction reaction, in terms of the cathodic
Tafel slope 𝑏c ≡ R𝑇/𝛼R𝐹:

𝜂c = −𝑏cln
(−𝑗⊥
𝑗∗

𝑐O,eq

𝑐O

)
. (1.31)

At the cathode, both 𝑗⊥ and 𝜂c are negative quantities.

Concentration-independent symmetric kinetics

When there are no appreciable concentration gradients throughout the cell so that
𝑐R
𝑐R,eq

=
𝑐O
𝑐O,eq

= 1, we obtain in the concentration-independent Butler-Volmer equation

15Sometimes another convention is used in which part of the concentration effect is attributed to the
surface overpotential, see the end of 1.B.2.
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𝑗⊥ = 𝑗∗
(
e𝜂/𝑏a − e−𝜂/𝑏c

)
. (1.32)

Figure 1.6 illustrates the shape of this curve and how to use it to derive 𝑏a, 𝑏c, and 𝑗∗.
In case of equal charge transfer coefficients 𝛼O = 𝛼R = 1/2 we can use the definition
sinh 𝑥 ≡ 1

2 (e𝑥 − e−𝑥) of the hyperbolic sine, to write Eq. (1.32) as 𝑗⊥ = 2𝑗∗sinh
( 𝜂
𝑏

)
using 𝑏 = 2R𝑇

𝐹 . This may be referred to as the symmetric concentration-independent
Butler-Volmer equation. Inverting it gives16

𝜂 = 𝑏 asinh
(
𝑗⊥
2𝑗∗

)
. (1.33)

At high current densities 𝑗⊥ ≫ 𝑗∗we have 𝑏 asinh (𝑗⊥/2𝑗∗) ≈ 𝑏 ln 𝑗⊥/𝑗∗ so that Eq. (1.33)
reduces to the Tafel equation.17

Linear kinetics

For most applications 𝑗⊥ ≫ 𝑗∗ so that Tafel kinetics is an appropriate approximation.
For some particularly facile reactions, like hydrogen oxidation on platinum, the
exchange current density 𝑗∗ is so high that | 𝑗⊥ | < 𝑗∗. Using the first-order Taylor
expansion e𝑥 ≈ 1 + 𝑥 for 𝑥 ≪ 1, Eqs. (1.32) and (1.22) give the equation for linear
kinetics

𝜂 = 𝐴𝑅𝑗⊥ with 𝐴𝑅 =
R𝑇
𝐹𝑗∗

. (1.34)

Here, in analogy with Eq. (1.8), we introduced an area-specific resistance 𝐴𝑅. Note
that linear kinetics only holds for very low activation overpotentials 𝜂 ≲ R𝑇/𝐹 ∼ 25
mV.

1.5 Simplified cell model
In this section, we integrate the various elements discussed in this chapter into a first
cell model.

Figure 1.7 shows typical profiles of both the electronic and the electrolyte po-
tentials through an electrochemical cell in equilibrium during electrolysis (𝑉cell <
𝑉eq < 0) and galvanic operation (0 < 𝑉cell < 𝑉eq), respectively. The figure is slightly
complicated by including the increase in potential inside the cables and electrodes in
the direction of the electron flow, but does not have to be fully comprehended at this
point. In case of negligible electronic resistance, the picture would be slightly simpler.

16Here the inverse hyperbolic sine can be written as asinh(𝑥) = ln
(
𝑥 +
√

1 + 𝑥2
)

so that for 𝑥 ≫ 1 we
have asinh(𝑥) ≈ ln (2𝑥)

17For low current densities 𝑗⊥ ≪ 𝑗∗we have 𝑏 asinh (𝑗⊥/2𝑗∗) ≈ 𝑏 𝑗⊥/2𝑗∗, which is consistent with Eq. (1.34).
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𝑉cell𝑉eq

𝜙eq

Equilibrium
𝑉cell = 𝑉eq

Electrolytic
𝑉cell < 𝑉eq < 0

𝑗⊥𝜂a

e−

𝜂c (
𝐸 − 𝜙

)
eq

𝑉cell

Galvanic

𝜂a

𝜂c𝜙

Galvanic
0 < 𝑉cell < 𝑉eq

𝐸a

𝐸eq,c
Electrolytic

Figure 1.7: The electronic potential (black for an electrolytic cell, grey for a galvanic cell) and
electrolyte potential 𝜙 (blue) profiles throughout the cell and inside the external circuit. In
an electrolytic cell 𝑉cell < 𝑉eq < 0. The electronic potential is locally multi-valued to show
both variations inside the porous electrode and the cables. The electrolyte potential 𝜙 shows
a constant slope in the electrolyte, which is assumed to have a constant conductivity. The
“entrance” of the porous electrodes is indicated in the middle picture with the red vertical
dashed lines to guide the eye. Beyond this point, a gradually decreasing slope inside the
(porous) electrodes can be seen towards the back where the ionic current and hence this slope
vanishes.

For completeness, and to anticipate what lies ahead in chapter 3, we also considered
the electrodes to be porous. In this case, the overpotential 𝜂 = 𝐸−𝜙− (𝐸−𝜙)eq is not
a constant, but varies throughout the electrode, further complicating the picture.

Often, the electronic conductivity of the electrodes is high enough to assume
constant electrode potentials 𝐸a and 𝐸c. However, for generality, we include here
an ohmic potential drop Δ𝑉 , which receives contributions from electrons moving
through the electrode material, current collectors, and cables before arriving at the
load or source. Note that in a galvanic cell Δ𝑉 decreases the positive cell voltage,
while in an electrolytic cell Δ𝑉 makes the negative cell voltage more negative. Both
efficiencies thus decrease as a result of the electronic ohmic losses ∆𝑉 .

We will define the electrolyte potentials 𝜙a and 𝜙c at the electrode-electrolyte
interface so that ∆𝜙 ≡ 𝜙a − 𝜙c > 0 gives the ohmic drop between the electrodes,
which vanishes in equilibrium ∆𝜙eq = 0. With the definition of Eq. (1.26) and
𝑉eq = 𝐸eq,c − 𝐸eq,a we can then write

𝑉cell = 𝑉eq + 𝜂c − 𝜂a − ∆𝜙 − ∆𝑉. (1.35)

This important result gives the cell potential as a sum, or an equivalent series circuit,
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of the equilibrium potential. All terms on the right act to reduce 𝑉eq and may be
referred to as voltage losses, or overpotentials. These losses consist of activation over-
potentials 𝜂a > 0 and−𝜂c > 0 as well as ohmic losses due to ions ∆𝜙 and electrons ∆𝑉 .

We conclude this chapter by inserting expressions for these losses obtained from
the previous section, assuming:

1. An electrolyte with constant conductivity between the anode and cathode, so
we can insert Eq. (1.6) for the electrolyte potential drop ∆𝜙 = 𝑗𝐿/𝜅.

2. An ohmic resistance 𝑅 for the electronic circuit, so we can use Eq. (1.8) for the
electronic potential drop ∆𝑉 = 𝑗𝐴𝑅.

3. Concentration-independent Tafel kinetics for the anode, where 𝑗⊥ = 𝑗 > 0, so
we can use Eq. (1.32) to write 𝜂a = 𝑏aln (𝑗/𝑗∗a).18

4. Similarly, at the cathode 𝑗⊥ = −𝑗, so we can use Eq. (1.31) to write 𝜂c =

−𝑏cln (𝑗/𝑗∗c) .

Inserting these expressions into Eq. (1.35) gives

𝑉cell = 𝑉eq −
(
𝑏cln

(
𝑗

𝑗∗c

)
+ 𝑏aln

(
𝑗

𝑗∗a

)
+ 𝑗𝐿

𝜅
+ 𝑗𝐴𝑅

)
. (1.36)

All voltage losses between brackets are positive as they should. Figure 1.8 illustrates
this expression using values that are typical for a common alkaline water electrol-
yser. For low current densities, the logarithmic activation overpotentials dominate,19
while for the higher current densities, their contribution increases only very slowly.
Therefore, the linear ohmic losses dominate the slope of the cell voltage at higher
current densities.

The electrochemical engineer aims to minimise the voltage losses in an electro-
chemical cell while keeping the system costs to a minimum. Economic viability
usually requires the use of high current densities to get as much product as possible
for as little cell material as possible. More expensive catalysts may be used to reduce
activation and voltage losses, but alternatively, using a larger surface area may be
more cost-effective. Therefore, porous electrodes with a large internal surface area
are often used. Also, additional phenomena like mass transport and multiphase
flow phenomena start to play a role and impact the cell voltage. Creating an under-
standing of all these factors of influence, providing a mathematical description, and,
where possible, providing optimised design parameters will be the main goal of the
remainder of this book.

18For many applications this is a reasonable approximation for intermediate current densities that are
large enough for Tafel kinetics to hold (𝑗 ≳ 2𝑗∗) but small enough for concentration effects to be neglected.
When smaller currents 𝑗 ≲ 𝑗∗ should also be included, Eq. (1.33) shows we can replace ln

(
𝑗

𝑗∗

)
with

asinh
(
𝑗⊥
2𝑗∗

)
. Strictly speaking, this is only exactly valid for symmetric kinetics with 𝛼 = 1/2.

19We replaced ln 𝑥 with asinh 𝑥
2 in Eq. (1.36), as in Eq. (1.33). This gives approximately the same result

for 𝑥 ≫ 1 but avoids the negative values that arise for 𝑥 < 1 for which the Tafel approximation is invalid.
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Figure 1.8: The negative of the cell voltage −𝑉cell of an electrolytic cell as a function of
current density 𝑗 as described by Eq. (1.36) using 𝑉eq = −1.23 V, 𝑏a ≈ 𝑏c ≈ 50 mV,
𝑗∗c = 10−2 A/cm2, 𝑗∗a = 10−4 A/cm2, an electrolyte area-specific resistance 𝜅/𝐿 = 0.5 Ω

cm2 and electronic area-specific resistance 𝐴𝑅 = 0.01 Ωcm2. The logarithmic activation
overpotentials mostly increase the voltage losses at low current densities but hardly vary for
higher values, where the linear ohmic losses dominate the slope.

1.6 Summary
• The ionic current density in an electrochemical cell often approximately follows

Ohm’s law 𝒊 = 𝜅𝑬 = −𝜅∇𝜙. It is oriented in the direction of the electric field
from anode, where the oxidation reaction releases electrons, to cathode, where
electrons are consumed in the reduction reaction O+𝑛e− ↔ R, Eq. (1.9), through
a potential drop Δ𝜙 = 𝐴𝑅𝑗 = 𝑗𝐿/𝜅.

• The cell voltage 𝑉cell = 𝐸c − 𝐸a = 𝑉cell + 𝜂c − 𝜂a − Δ𝑉 of Eq. (1.10) is positive
in a galvanic cell and related to voltage efficiency as 𝜑e =

𝑉cell
𝑉eq

, Eq. (1.12). It is

negative in an electrolytic cell and related to efficiency as 𝜑e =
𝑉eq
𝑉cell

, Eq. (1.13).

• For first-order kinetics, the current density 𝑗⊥ = 𝑛𝐹𝑁⊥ from anode to cathode
can often be described by the Butler-Volmer equation 𝑗∗

(
𝑐R
𝑐R,eq

e
𝛼O𝐹𝜂
R𝑇 − 𝑐O

𝑐O,eq
e−

𝛼R𝐹𝜂
R𝑇

)
,

Eq. (1.27), which can be reduced to

– the Tafel equation, 𝑗⊥ = 𝑗∗
𝑐R
𝑐R,eq

e𝜂a/𝑏a , (1.28) for high overpotentials 𝜂 =

(𝐸 − 𝜙) − (𝐸 − 𝜙)eq, or 𝑗⊥ ≫ 𝑗∗

– linear kinetics, with an areal resistance 𝐴𝑅 = R𝑇
𝐹𝑗∗

for low overpotentials,
and
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– the Nernst equation 𝐸eq = 𝐸0′ + R𝑇
𝑛𝐹 ln

(
𝑐O,eq
𝑐R,eq

)
, where 𝑛 appears when con-

sidering multiple reaction steps near equilibrium (1.C.49).
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1.7 Exercises

Exercise 1.1
The exchange current density and charge transfer coefficient of an electrochemical
reaction at a cathode are 𝑗∗ = 0.01 mA/cm2 and 𝛼R = 0.65, respectively. Give an ap-
proximate value for the activation overpotential on the cathode at ambient conditions,
at a current density 𝑗⊥ = −20 mA/cm2, assuming 𝐶R ≈ 𝐶R,eq.

Exercise 1.2
Consider the simple cell model

𝑉cell = 𝑉eq − 𝜂 − 𝑗𝐴𝑅

. Assume that the current density 𝑗 is high enough for the activation overpotential 𝜂 to
be approximately independent of current density. The useful power output of a
galvanic cell is given by 𝑃 = 𝑗𝐴𝑉cell. Give an expression for the current density 𝑗 for
which this quantity is maximised.

Exercise 1.3
Consider a cell in which both anode and cathode follow concentration-independent
Tafel kinetics, with the anodic and cathodic activation overpotentials given by

𝜂a = 𝑏a ln
(
𝑗

𝑗∗a

)
and 𝜂c = −𝑏c ln

(
𝑗

𝑗∗c

)
. (1.37)

Combine both overpotentials in a single expression for the total activation overpo-
tential 𝜂a − 𝜂c = 𝑏 ln (𝑗/𝑗∗).
a. What is the combined Tafel slope 𝑏?
b. If 𝑏a = R𝑇/𝛼a𝐹 and 𝑏c = R𝑇/𝛼c𝐹 give the combined charge transfer coefficient

𝛼 = R𝑇/𝑏𝐹 in terms of 𝛼a and 𝛼c

c. What is the combined exchange current density 𝑗∗?

Exercise 1.4
A consortium of companies is developing a new wind park integrated with water
electrolysers. The combined nominal electrolyser power is chosen to be 50 MW. As
the available space is important, the electrolysers have to be as small as possible.
We assume a distance between the electrodes of 500 𝜇m with an effective electrolyte
conductivity 20 S/m, with 𝑏c = 𝑏a = 0.05 V, 𝑗∗a = 102 A/m2 and 𝑗∗c = 1 A/m2. We
neglect any ohmic losses in the electrical connections and electrodes and any effect
of bubbles.



40

a. If a voltage efficiency of 60% with respect to 1.23 V is required, how much com-
bined anode and cathode electrode area do you need? Hint: You might need to
use a numerical solver to get to the solution.

b. Someone in your company finds out that heating the electrolyte to 100 ◦C increases
the ionic conductivity to 70 S/m. With the same electrode area, what will the
new efficiency be?

Exercises 1.5-1.9
Fill in the missing steps in the main text, indicated by the symbol .



Appendices *

1.A Multiple reaction steps
Often, electrochemical reactions involve several subsequent steps, including mass
transfer, adsorption, desorption, redox reactions, and sometimes chemical reactions.
Usually one of the steps is much slower than the rest,20 which is then referred to as
the rate-determining step (rds). Parsons [20] considered how to deal with multi-step
reactions in a rather general way. Considering a process consisting of 𝑛preO electron-
transfer steps before a rate-determining oxidation step and 𝑛postO after, he found
that the effective charge transfer coefficients becomes 𝛼effO = 𝑛preO + 𝑛rdsO𝛼O, and
similarly 𝛼effR = 𝑛postO + 𝑛rdsO𝛼R. Inserting these effective values in Eq. (1.27) gives

𝑗⊥ = 𝑗∗

(
𝑐R
𝑐R,eq

e(𝑛preO+𝑛rds𝛼O) 𝐹𝜂R𝑇 − 𝑐O
𝑐O,eq

e−(𝑛postO+𝑛rds𝛼R) 𝐹𝜂R𝑇

)
. (1.A.38)

Here 𝑛rdsO = 1 since the rate-determining step almost always involves the transfer of a
single electron [3] or 𝑛rdsO = 0 when the rate-determining step is not a charge-transfer
step. The sum of the rate-determining step charge transfer coefficients 𝛼O+𝛼R = 1 as
indicated in Eq. (1.22) so that 𝛼effO + 𝛼effR = 𝑛preO + 𝑛postO + 𝑛rdsO(𝛼O+𝛼R) = 𝑛, the
total number of electrons transferred

Note that the rate-determining step for the reverse reduction reaction does not
have to be the same as that of the forward oxidation reaction. In this case we have
𝛼effR = 𝑛preR + 𝑛rds𝛼R and 𝛼effO = 𝑛postR + 𝑛rds𝛼O where 𝑛preR is not necessarily equal
to 𝑛postO and 𝑛postR is not necessarily equal to 𝑛preO, unless the rate-determining step
is the same.

Electron-transfer steps preceding the rate-determining step thus act to increase the
effective transfer coefficient and reduce the Tafel slope. When the rate-determining
step is the first single-electron transfer step 𝛼eff = 𝛼 ≈ 1/2, while if there is a preceding
electron transfer step 𝛼eff = 1 + 𝛼 ≈ 3/2, or there are two preceding electron transfer
steps and the rsd does not involve an electron transfer 𝛼eff = 2 + 0 = 2. The latter is
thus beneficial in the sense that it gives a lower Tafel slope, and measurement of the
Tafel slope under controlled conditions gives insight into the reaction mechanism.

20As all steps take place subsequently, they must all proceed at the same rate. What is meant here is
that the step has a much lower rate constant. In the case of an electrochemical reaction, it requires much
more overpotential than the others to proceed at the same rate.
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Take, for example, the hydrogen evolution reaction in which, according to the Volmer
mechanism, the rate-determining step can be the first electron transfer step. With
𝛼R = 1/2 this gives at room temperature a Tafel slope 𝑏c = R𝑇/𝛼R𝐹 ≈ 50 mV, or
ln 10𝑏c ≈ 2.3𝑏c ≈ 120 mV per decade. In case the Heyrovski step is rate-determining,
𝛼effR = 3/2 and the Tafel slope becomes 40 mV per decade. Finally, a Tafel step
involving the desorption of oxygen or hydrogen but no electron transfer can be rate-
determining, in which case 𝛼effR = 2 and the Tafel slope reduces further to only
30 mV. The oxygen evolution reaction involves more electron transfer steps so even
smaller Tafel slopes can be observed. Note that a Tafel slope of 120 mV does not
automatically imply the Volmer mechanism [23]. Also, transport phenomena can
significantly influence the Tafel slope, which we will consider in Chapter 3.

1.B Alternative Butler-Volmer formulations

1.B.1 Changing reference concentrations
Eq. (1.27) uses the equilibrium concentrations of the oxidants and reductants. These
are the concentrations associated with a zero current density. Sometimes, it can be
convenient to use different reference concentrations 𝑐R,ref and 𝑐O,ref. In terms of these
we can rewrite Eq. (1.27), after some algebra, as

𝑗⊥ = 𝑗∗ref

(
𝑐R
𝑐R,ref

e
𝛼O𝐹

R𝑇 (𝐸−𝐸ref) − 𝑐O
𝑐O,ref

e−
𝛼R𝐹
R𝑇 (𝐸−𝐸ref)

)
. (1.B.39)

Here 𝐸 − 𝐸ref = 𝜂 + ln
(
𝑐R,ref
𝑐R,eq

)
− αR

𝛼O
ln

(
𝑐O,ref
𝑐O,eq

)
and 𝑗∗ref = 𝑗∗

(
𝑐R,ref
𝑐R,eq

)𝛼R (
𝑐O,ref
𝑐O,eq

)𝛼O
, as can

be verified by inserting Eq. (1.22). Choosing 𝑐𝑅,ref = 𝑐𝑂,ref = 1 M we can write

𝑗⊥ = 𝑛𝐹𝑘0
(
𝑐Re

𝛼O𝐹

R𝑇 (𝐸−𝐸0′) − 𝑐Oe−
𝛼R𝐹
R𝑇 (𝐸−𝐸0′)

)
, (1.B.40)

in terms of the intrinsic or standard rate-constant 𝑘0 and formal potential 𝐸0′ as is done
in, for example, Ref. [3]. The associated Nernst equation obtained for 𝑗⊥ = 0 reads
𝐸 = 𝐸0′ + R𝑇

𝐹 ln 𝑐O,eq
𝑐R,eq

. The exchange current density follows, inserting this back in
Eq. (1.27) as 𝑗∗ = 𝑛𝐹𝑘0𝑐𝛼R

R,eq𝑐
𝛼O
O,eq.

1.B.2 Changing overpotentials
The overpotential 𝜂 =

(
𝐸 − 𝜙

)
−

(
𝐸 − 𝜙

)
eq in Eqs. (1.27) and (1.B.39) is relative to

different but fixed reference concentrations. When the current is switched on these
concentrations will change: the reactant concentration will decrease while the prod-
uct concentration decreases. Both effects will increase the overpotential required to
sustain the current. To quantify this effect we transform Eq. (1.A.38), with some
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algebra, into the following form

𝑗⊥ = 𝑗∗s
(
e

𝛼effO𝐹𝜂s
R𝑇 − e−

𝛼effR𝐹𝜂s
R𝑇

)
, (1.B.41)

where the effective exchange current density 𝑗∗s depends on the concentration ac-
cording to

𝑗∗s = 𝑗∗

(
𝑐R
𝑐R,eq

) 𝛼effR
𝑛

(
𝑐O
𝑐O,eq

) 𝛼effO
𝑛

(1.B.42)

and 𝜂s ≡ 𝜂 − 𝜂c where the concentration overpotential

𝜂c =
R𝑇
𝑛𝐹

[
ln

(
𝑐O
𝑐O,eq

)
+ ln

(
𝑐R,eq

𝑐R

)]
(1.B.43)

At the anode, the reactant 𝐶R will decrease, making a positive contribution to the
concentration overpotential. The product 𝐶O increases, also making a positive contri-
bution. So both effects increase the total overpotential 𝜂, and similarly for a cathode.

In this new formulation, the Butler-Volmer equation (1.B.41) has seemingly be-
come concentration-independent. The concentration-dependence has now entered
the new exchange current density 𝑗∗s and the associated surface overpotential 𝜂s is
now only one component of the full overpotential 𝜂 = 𝜂s + 𝜂c, with the other part
being the concentration overpotential. This makes it possible to determine which
part of the overpotential should be attributed to concentration and which part is
due to kinetics, where we note that the kinetics is furthermore influenced by the
concentration through the new exchange current density 𝑗∗s.

In case of a symmetric reaction with 𝛼O = 𝛼R we can solve Eq. (1.B.41) analytically
as in Eq. (1.33) to give

𝜂 =

surface overpotential︷           ︸︸           ︷
𝑏 asinh

(
𝑗⊥

2𝑗∗s

)
+

concentration overpotential︷                   ︸︸                   ︷
R𝑇
𝐹

ln
(
𝑐O
𝑐O,eq

𝑐R,eq

𝑐R

)
(1.B.44)

where 𝑏 = 2R𝑇
𝐹 .

We may further simplify by assuming an anode where the reactant concentration
𝑐R changes significantly while the product concentration 𝑐O ≈ 𝑐o,eq remains fairly
constant. An example is the anode in alkaline water electrolysis at low electrolyte
concentrations where the reactant is hydroxide and the product is water. In this case

𝜂 =
R𝑇
𝐹

[
2 asinh

(
𝑗⊥

2𝑗∗s

)
+ ln

(
𝑐R,eq

𝑐R

)]
. (1.B.45)

Another relevant limit is the Tafel limit, in which one of the terms in the Butler-
Volmer equation (1.27) dominates over the other. For definiteness let us assume an
anode, in which case Eq. (1.B.41) can be solved to give

𝜂s = 𝑏aln
(
𝑗⊥
𝑗∗s

)
= 𝑏aln

(
𝑗⊥
𝑗∗

)
− R𝑇

𝐹

[
𝛼R
𝛼O

ln
(
𝑐R
𝑐R,eq

)
+ ln

(
𝑐O
𝑐O,eq

)]
(1.B.46)
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where 𝑏a = R𝑇/𝛼O𝐹 and we inserted Eq. (1.B.42). The final term exactly cancels with
the first term of Eq. (1.B.43). The first term between the square brackets combines
with the second term of Eq. (1.B.43), using 1 − 𝛼R = 𝛼O to give R𝑇

𝐹 ln
(
𝑐R
𝑐R,eq

)
.

1.C The Nernst equation
Next, we aim to derive the Nernst equation for the equilibrium potential. For this
purpose, we use the form of the Butler-Volmer equation of Eq. (1.B.39), which in
equilibrium gives

𝑐rdsO,eq

𝑐rdsR,eq
= e

𝐹𝑛rdsO
R𝑇 (𝐸eq−𝐸0′

rds). (1.C.47)

The non-rate-determining steps will usually be fast enough compared to the
rate-determining step, so they can be considered in equilibrium [1]. When the
𝑛preO charge-transfer steps before and 𝑛postO after the rate-determining step are in
equilibrium:

𝑐O,eq

𝑐rdsO,eq
= e

𝑛preO𝐹

R𝑇 (𝐸eq−𝐸0′
preO) and

𝑐rdsR,eq

𝑐R,eq
= e

𝑛postO𝐹

R𝑇 (𝐸eq−𝐸0′
postO). (1.C.48)

This gives 𝑐O,eq
𝑐R,eq

= e
𝑛preO𝐹

R𝑇 (𝐸eq−𝐸0′
preO)e 𝐹

R𝑇 (𝐸eq−𝐸0′
rds)e

𝑛postO𝐹

R𝑇 (𝐸eq−𝐸0′
postO) = e

𝑛𝐹
R𝑇 (𝐸eq−𝐸0′)where

𝐸0′ =
𝑛preO𝐸

0′
preO+𝑛rdsO𝐸

0′
rds+𝑛postO𝐸

0′
postO

𝑛 when used in Eq. (1.C.47). This leads to the general
multi-electron transfer Nernst equation

𝐸eq = 𝐸0′ + R𝑇
𝑛𝐹

ln
(
𝑐O,eq

𝑐R,eq

)
. (1.C.49)

Solving Eq. (1.B.39) for 𝑗⊥ = 0, with 𝛼O and 𝛼R replaced with 𝛼effO and 𝛼effR,
gives 𝐸 = 𝐸eff + R𝑇

𝑛𝐹 ln
(
𝑐O,eq𝑐R,ref
𝑐O,ref𝑐R,eq

)
, another form of the multi-electron transfer Nernst

equation.



Chapter 2

Transport

Starting from a general conservation equation, the conservation of mass, heat, momentum, and
charge are described. The mass transport equations are used to calculate the concentration
overpotential. The Boltzmann distribution and Einstein relations are used to derive the
Nernst-Planck equation, which describes the transport of ions. A mathematical description
of both binary and ternary electrolytes is provided. Finally, a time-dependent solution to the
mass transport equations is used to describe the concentration overpotential and the associated
limiting current density as a function of time.

2.1 Conservation equations
A general conservation equation can be written in differential form as

𝜕𝑐

𝜕𝑡
= −∇ · 𝑵 + 𝑆, (2.1)

where 𝑐 is the concentration [something/m3] of a conserved quantity. This can be
for example the mass density 𝜌 [kg/m3] or the charge density 𝜌𝑞 [C/m3]. The final
term 𝑆 is a source, and 𝑵 [something/m2/s] is the flux related to 𝑐. We will use
the symbol 𝑐 [mol/m3] to represent the molar concentration of a species in a gas or
dissolved in a liquid. If the fluid moves with a velocity 𝒖, the flux associated with a
low concentration 𝑐 can be approximately written as

𝑵 = 𝑐𝒖 − 𝐷∇𝑐. (2.2)

The first term 𝑐𝒖 is the advective flux. The concentration at a location can increase
or decrease because of a higher or lower concentration upstream, respectively. In
the absence of flow, 𝑵 = −𝐷∇𝑐 is called Fick’s law and describes diffusive transport
proportional to the diffusivity or diffusion coefficient 𝐷 [m2/s].1 Inserting Eq. (2.2)

1In this book we will assume dilute concentrations so we can neglect the impact of mass transport of a
species on the flow velocity. See appendix 2.B for a simple 1D example in which this effect is included.
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in Eq. (2.1) gives, with ∇ · (𝑐𝒖) = 𝑐∇·𝒖 + 𝒖 · ∇𝑐 and assuming incompressible flow,
∇ · 𝒖 = 0 as discussed in Appendix 2.A.1, and constant 𝐷:

𝐷𝑐

𝐷𝑡
= 𝐷∇2𝑐 + 𝑆. (2.3)

Here 𝐷𝑐
𝐷𝑡 ≡ 𝜕𝑐

𝜕𝑡 + 𝒖 · ∇𝑐 is the material derivative. It represents the time variation of
𝑐, while moving along a streamline of the flow. Equation (2.3) is referred to as an
advection-diffusion-reaction equation, in case 𝑆 represents a reaction.

Integrating Eq. (2.1) over a fixed volume V we obtain

𝑑
∫
𝑐𝑑V
𝑑𝑡

= −
∫

𝑵 · 𝑑𝑨 +

∫
𝑆𝑑V , (2.4)

where we used the divergence theorem, also known as Gauss’ theorem, to write
−

∫
∇ · 𝑵𝑑V = −

∫
𝑵 · 𝑑𝑨.2

2.1.1 Charge transport
The flux of electric charge is the current density, for which we use the symbols 𝒋 and
𝒊 [A/m2], depending on whether we describe electrons or ions, respectively. Except
in the electric double layer, with length scales of the order of a few molecules near
a surface, electrolytes contain an equal density of positive and negative ions so that
the charge density 𝜌𝑞 [C/m3] vanishes. Nonetheless, we can create a conservation
equation for charge by replacing 𝑐 in Eq. (2.1) with 𝜌𝑞 and 𝑵 with 𝒊 to give

𝜕𝜌𝑞

𝜕𝑡
= −∇ · 𝒊 + 𝑆𝑞 , (2.5)

where 𝑆𝑞 [C/s/m3] is a volume source of charge. Assuming zero charge density:3

2The infinitesimal area vector 𝑑𝑨 is directed outwards of the integration volume. Equation (2.4) shows
the change in time by influx (𝑑𝑨 · 𝑵 < 0) or outflux (𝑑𝑨 · 𝑵 > 0), sources (𝑆 > 0) or sinks (𝑆 < 0).

3Gauss’s law from electrostatics relates the divergence in the electric field to charge density

∇ · 𝑬 = 𝜌𝑞/𝜀r𝜀0 (2.6)

where 𝜀r𝜀0 is the electrical permittivity of the material under consideration, with 𝜀0 = 8.85 · 10−12 C/V/m
that of the vacuum and 𝜀r the relative permittivity. Comparing Eq. (2.6) with Eq. (1.1), we may interpret
𝜌𝑞/𝜀r𝜀0 as the source of some constant quantity for which the electric field is the flux. Inserting Ohm’s
law, Eq. (1.5), into Eq. (2.5) and using Eq. (2.6), assuming constant 𝜅 and no sources or sinks, we obtain

𝜕𝜌𝑞

𝜕𝑡
= − 𝜅

𝜀r𝜀0
𝜌𝑞 . (2.7)

The solution to Eq. (2.7) will be 𝜌𝑞(𝑡) = 𝜌𝑞(0)e
− 𝑡

𝜀r𝜀0/𝜅 . In the previous chapter, we argued that good
performance of electrochemical devices requires high conductivity, usually 𝜅 ≳ 1 S/m. The resulting
characteristic time-scale, 𝜀0/𝜅 ≪ 10−11 s, is extremely small. This implies that any small charge imbalance
will be restored almost instantaneously to give 𝜌𝑞 = 0. Therefore, we can safely assume electroneutrality.
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𝜌𝑞 = 0, (2.8)

equation (2.5) gives:

∇ · 𝒊 = 𝑆. (2.9)

Thus, in the absence of charge sources, the current is divergence-free. In Ap-
pendix 2.A, three more examples of conservation equations for mass, heat, and
momentum are provided for readers needing more practice or familiarity.

2.2 Concentration overpotential
In the previous chapter we considered the concentration-dependent Tafel equa-
tions (1.29) and (1.31) for an oxidation and reduction reaction respectively. To avoid
having to specify whether we describe an anode or a cathode we will use a general
reactant concentration 𝑐 and the current density magnitude 𝑗.4 We can then write
Eqs. (1.29) and (1.31) as

𝜂 = 𝑏ln
(
𝑗

𝑗∗

𝑐eq

𝑐

)
= 𝑏ln

(
𝑗

𝑗∗

)
+ 𝑏ln

( 𝑐eq

𝑐

)
. (2.10)

The final term, the concentration overpotential introduced already in Eq. (1.30), in-
creases when the concentration 𝑐 at the surface of the electrode drops below the
equilibrium concentration 𝑐eq. This will generally happen as the reaction proceeds
and the reactant concentration 𝑐 locally decreases. The concentration difference 𝑐eq−𝑐
with the unaltered bulk concentration will drive the supply of fresh reactants to the
electrode by diffusion.

Consider a steady-state without a concentration volume source, 𝑆 = 0, so that
Eq. (2.1) becomes 0 = −∇·𝑵 . Close to an electrode we can consider a one-dimensional
approximation and introduce an 𝑥-coordinate normal to an electrode, with the elec-
trode surface at 𝑥 = 0, and positive values for 𝑥 extending into the the electrolyte as
shown in Fig. 2.1, so

𝑑𝑁

𝑑𝑥
= 0. (2.11)

Equation (2.2) in the 𝑥-direction, in the absence of flow, gives 𝑁 = −𝐷 𝑑𝑐
𝑑𝑥

. Inserting
this into Eq. (2.11) shows that for constant diffusivity 𝐷, the concentration gradient
𝑑𝑐/𝑑𝑥 is a constant, as depicted in Figure 2.1. Usually, at some distance from an
electrode, the fluid flows can no longer be neglected due to intentional stirring,
forced flow, gas bubbles, or natural convection due to concentration or temperature
gradients. Beyond this distance, mixing will ensure a more or less constant bulk

4In case of a catalyst-coated or rough surface there may be a difference between the local current density
𝑗⊥ and the overall current density magnitude 𝑗. We can take this into account by redefining or measuring
the exchange current density 𝑗∗ with respect to the macroscopic surface area.
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Bulk, mixed

𝑐eq

𝑐

𝑐0
𝑥 𝑥 = 𝛿

Boundary Layer

Figure 2.1: A schematic of an idealised boundary layer concentration profile near an electrode.
Within a distance 𝑥 < 𝛿 no flow is assumed, giving a constant concentration gradient. Beyond
𝑥 > 𝛿 exists a perfectly mixed bulk solution with reactant concentration 𝑐eq.

concentration. We will assume this to be equal to the concentration before the
current was switched on so that we can use the equilibrium concentration 𝑐eq.

Figure 2.1 depicts the often-used boundary layer idealisation that results from our
assumptions, in which the domain is split into a no-flow region close to the electrode
surface and a perfectly mixed bulk at a distance 𝑥 = 𝛿 from the electrode. This is
sometimes referred to as a Nernst layer, Nernst diffusion layer, or simply diffusion
layer. This should not be confused with the electric double layer (EDL), which is
typically several orders of magnitude thinner.

With this idealisation, the constant concentration gradient can be written as 𝑑𝑐
𝑑𝑥

=
𝑐eq−𝑐0

𝛿 , with 𝑐0 the concentration at the position of the electrode at 𝑥 = 0. Faraday’s
law (1.19) gives for the electric current density magnitude 𝑗 = 𝑛𝐹 |𝑁 | or

𝑗 = 𝑛𝐹
𝐷(𝑐eq − 𝑐0)

𝛿
= 𝑗lim

(
1 − 𝑐0

𝑐eq

)
. (2.12)

Here the limiting current density

𝑗lim ≡ 𝑛𝐹
𝐷𝑐eq

𝛿
, (2.13)

represents the maximum possible current, corresponding to the situation where
𝑐0 = 0. A higher current density will not be possible with this boundary layer thick-
ness 𝛿, since diffusion cannot supply reactants at a higher rate. Inserting Eq. (2.12)
into Eq. (2.10) gives

𝜂 = 𝑏ln
(

𝑗/𝑗∗
1 − 𝑗/𝑗lim

)
= 𝑏ln

(
𝑗

𝑗∗

)
+ 𝑏ln

(
1

1 − 𝑗/𝑗lim

)
. (2.14)

As 𝑗 approaches the limiting current density 𝑗lim, the concentration overpotential,
represented by the last term in Eq. (2.14), diverges. As long as 𝑗 ≪ 𝑗lim the con-
centration at the electrode surface will remain relatively close to the equilibrium
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𝑭

A

A B

B

Figure 2.2: Some particle trajectories of a molecule from A to B, where the changes in direction
are due to collisions with other molecules, without a net force acting (top) and with a net force
(bottom). An average drift velocity 𝒖d = M 𝑭 can be associated with the force 𝑭 .

concentration. In this case, the concentration overpotential will be well below the
Tafel slope (typically of the order 𝑏 ∼ 50 mV) and can often be neglected.

In case the reactant is an ion, we will have to consider the effect of the electric
force, which will be the topic of the next section.

2.3 Transport of charged species
Transport of ions is governed by the Nernst-Planck equation, which is a slight general-
isation of the conservation equation (2.1) with the flux expression (2.2). By Newton’s
second law, the force on a charged particle in an electric field leads to a constant
acceleration. In an electrolyte, these accelerating charged particles undergo frequent
collisions with each other or other species, as illustrated in Figure 2.2. The combined
effect of the acceleration in the direction of the electrical force 𝑭 and these frequent
collisions is a constant effective drift velocity in the direction of the force:

𝒖d = M 𝑭 . (2.15)
The constant of proportionality is called the mobility M [m/s/N]=[s/kg]. Also,
macroscopic particles can have a mobility as a result of collisions with molecules,
called friction. This is considered, for the interested reader, in more detail in Ap-
pendix 2.C.

2.3.1 Boltzmann distribution
Not all molecules in a gas or a liquid move with the same velocity. In equilibrium
thermodynamics, the probability of finding a particle with potential energy U is pro-
portional to the Boltzmann factor e−

U
𝑘B𝑇 , where the thermal energy 𝑘B𝑇 is a measure

of the average kinetic energy per particle.5
5The probability of finding a molecule with an energy between 𝐸 and 𝐸 + 𝑑𝐸 is given by 𝑓 (𝐸)𝑑𝐸

with the probability density distribution 𝑓 (𝐸) given by Boltzmann distribution 𝑓 (𝐸) = e−𝐸/𝑘B𝑇/𝑘B𝑇,
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𝜙

0 𝑥

𝑭

Figure 2.3: Positively charged particles in thermal equilibrium near a minimum 𝜙 = 0 in the
electrical potential are distributed according to a Boltzmann distribution e−𝑧�̄�. Exponentially
fewer particles have sufficient kinetic energy to be found far away from the location where 𝜙
is a minimum, for example, near 𝑥 = 0 when 𝜙 ∝ 𝑥2.

The Boltzmann constant can be expressed as 𝑘B = R/𝑁A, with 𝑁A Avogadro’s
number and R the gas constant. The average kinetic energy of a mole of particles
is therefore 𝑁A𝑘B𝑇 = R𝑇. In the previous chapter, we encountered the Boltzmann
distribution in the Arrhenius expression (1.21). The reaction rate is thus proportional
to the chance that particles have a thermal energy per mole R𝑇 that exceeds the
activation energy Ea. In Eq. (1.3) we introduced the potential energy U = 𝑞𝜙 of
a charged particle in a electric potential field 𝜙. We can write the charge 𝑞 of a
particle as a multiple, the charge number z, of the elementary charge (of a proton)
𝑒 = 1.602176634 · 10−19 C as

𝑞 = z𝑒. (2.16)

In thermodynamic equilibrium, the concentration 𝑐 of charged particles will be
given by the Boltzmann distribution as

𝑐 ∝ e−
U
𝑘B𝑇 = e−

𝑞𝜙
𝑘B𝑇 = e−z�̄� . (2.17)

In the second expression, we inserted Eq. (1.3) and in the third, we introduced the
dimensionless electrostatic potential

�̄� =
𝑒𝜙

𝑘B𝑇
=
𝐹𝜙

R𝑇
. (2.18)

Figure 2.3 schematically illustrates the Boltzmann distribution of Eq. (2.17) for
positively charged particles in thermal equilibrium distributed around a minimum
in the electrostatic potential.

which is normalised such that the probability of finding a particle at all
∫ 1

0 𝑓 (𝐸)𝑑𝐸 = 1. The average
energy

∫ ∞
0 𝐸 𝑓 (𝐸)𝑑𝐸, is the thermal energy 𝑘B𝑇. This exponential relation is the only function for which

𝑓 (𝐸1) 𝑓 (𝐸2) is a function of 𝐸1 + 𝐸2. This should hold since the probability of finding two particles with
energy 𝐸1 and 𝐸2 can only depend on the sum of their energies.
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Symbol Value Unit Description
R𝑇/𝐹 = 𝑘B𝑇/𝑒 ≈ 0.025 V Thermal potential

z ..-2,-1,0,1,2,... - Charge number, 𝑞/𝑒
R 8.314 J/mol/K Ideal gas constant
𝑒 1.602 · 10−19 C Elementary charge
𝑘B 1.38 · 10−23 J/K Boltzmann constant
𝐹 96485.332 C/mol Faraday constant

Table 2.1: Constants and notation used throughout the book. The dimensionless ionic
potential �̄� = 𝐹𝜙/R𝑇 is obtained by dividing the ionic potential by the thermal potential,
whose numerical value is provided for room temperature.

Another example of the Boltzmann distribution can be found in how molecules
of an ideal gas distribute themselves in the presence of gravity in an isothermal
atmosphere, as discussed in Appendix 2.E.

2.3.2 Einstein relation
As discussed in the previous chapter, charged particles will experience an electric
force given by Eqs. (1.1), (1.2), and (2.16) as

𝑭 = −z𝑒∇𝜙. (2.19)

This force will cause a drift velocity given by Eq. (2.15) as 𝒖d = −z𝑒M ∇𝜙. For a
dilute concentration 𝑐, so that the particle drift does not influence the flow velocity,
we can simply add this drift velocity to the flow velocity in Eq. (2.2) to give

𝑵 =
(
𝒖 − z𝑒M ∇𝜙

)
𝑐 − 𝐷∇𝑐. (2.20)

In thermodynamic equilibrium, without any flux and fluid flow, the concentration
𝑐 will satisfy the Boltzmann distribution Eq. (2.17). Differentiating Eq. (2.17) using
the chain rule gives∇𝑐 = −z𝑐∇�̄�, which upon insertion into Eq. (2.20) with 𝑵 = 𝒖 = 0
gives

M =
𝐷

𝑘B𝑇
. (2.21)

This proportionality between the mobility and the diffusivity is called the Einstein-
Smoluchowski equation.6 Because the mobility and diffusion coefficient are deter-
mined by the same collision rate, this linear relation may also be appreciated intu-
itively.

6Although Smoluchowski and Sutherland derived the same relation independently around the same
time, Albert Einstein published it in 1905. We derived it here for the case of an electrical force, but there are
more Einstein relations. With Eq. (2.C.72), the Stokes-Einstein relation 𝐷 =

𝑘B𝑇
3𝜋𝜇𝑑 results, which was used

by Einstein to support the molecule hypothesis using observation of the diffusive Brownian motion of tiny
dust particles. The mobility M is the ratio between drift velocity and force, while sometimes the electrical
mobility M𝑞 = 𝒖d/𝑬 = 𝑞M is used so that the Einstein-Smoluchowski relation reads 𝐷 = 𝑘B𝑇M𝑞/𝑞.
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2.3.3 Nernst-Planck flux
Inserting the Einstein relation (2.21) into Eq. (2.20) gives, using Eq. (2.18)

𝑵 = 𝑐𝒖 − 𝐷
(
∇𝑐 + z𝑐∇�̄�

)
. (2.22)

This expression for the flux of charged particles is referred to as the Nernst-Planck
flux. For neutral particles with 𝑧 = 0, or in the absence of an electric field 𝑬 = −∇𝜙,
Eq. (2.22) reduces to Eq. (2.2). In the absence of flow and concentration gradients the
flux

𝑵mig =
z𝐹𝐷𝑐

R𝑇
𝑬, (2.23)

is solely due to the drift of charged particles constantly accelerating and colliding, a
process sometimes referred to also as migration or conduction. We will sometimes use
a superscript “mig” or “diff” to denote those parts of the flux that can be attributed
to migration or diffusion, respectively. In this case, the concentration gradients and
flow are negligible and a flux of charged particles leads to a current density that is
proportional to the electric field. The proportionality constant, the conductivity 𝜅,
follows as

𝒊 = z𝐹𝑵mig = 𝜅𝑬 where 𝜅 =
z2𝐹2𝐷𝑐

R𝑇
. (2.24)

So we see that Ohm’s law Eq. (1.5) also holds for charged particles in a well-mixed
but otherwise stationary fluid.

We note that the Einstein relation, Eq. (2.21), with constant diffusivity, only holds
for dilute mixtures, typically for concentrations well below 1 M. However, taking
into account the concentration-dependence of the diffusivity 𝐷, the Nernst-Planck
equation (2.22) can often be used as a reasonable approximation also at higher con-
centrations.

2.3.4 Multicomponent transport equations
As discussed in section 2.1.1, the charge density of an electrolyte can usually be
considered to vanish, a condition referred to as electroneutrality or quasi-neutrality.
Therefore, there have to be at least two charged species with opposite charges. We
will label the different species7 by an index 𝑖, not to be confused with the magnitude
of the ionic current density, so that the Nernst-Planck flux of Eq. (2.22) becomes

𝑵 𝑖 = 𝑐𝑖𝒖 − 𝐷𝑖

(
∇𝑐𝑖 + z𝑖𝑐𝑖∇�̄�

)
. (2.25)

Each species diffuses with its own diffusivity𝐷𝑖 and migrates with its own mobil-
ity 𝐷𝑖/𝑘B𝑇 but all share the same advection velocity 𝒖 and potential 𝜙. Each species
individually satisfies a conservation equation Eq. (2.1)

7An example is the commonly used electrolyte sulphuric acid H+2 SO2−
4 dissolved in water. There will be

a concentration 𝑐1 with charge number z1 = 1 of H+ and a concentration 𝑐2 with charge number z2 = −2
of SO2−

4 . The charge density 𝜌𝑞 = z1𝑐1+z2𝑐2 = 0 so that 𝑐1 = 2𝑐2, so there are twice as many H+ compared
to SO2−

4 .
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𝜕𝑐𝑖
𝜕𝑡

= −∇ · 𝑵 𝑖 + 𝑆𝑖 . (2.26)

Eqs. (2.25) and (2.26) together are called the Nernst-Planck equation or equations.8
The charge flux, or species current density, associated with 𝑵 𝑖 is z𝑖𝐹𝑵 𝑖 so that

the total current density reads

𝒊 =
∑

z𝑖𝐹𝑵 𝑖 , (2.28)

where the summations here and below are understood to be over the index 𝑖. Inserting
Eq. (2.25) into Eq. (2.28) gives

𝒊 = 𝜌𝑞𝒖 − 𝐹
∑

z𝑖𝐷𝑖∇𝑐𝑖 + 𝜅𝑬, (2.29)

where the charge density can be usually assumed to be zero in accordance with
Eq. (2.8):

𝜌𝑞 = 𝐹
∑

z𝑖𝑐𝑖 = 0, (2.30)

and the ionic conductivity follows as

𝜅 =
𝐹2

R𝑇

∑
z2
𝑖 𝐷𝑖𝑐𝑖 . (2.31)

Note from Eqs. (2.29) and Eq. (2.30) that the fluid velocity 𝒖 does not influence the
current of a quasi-neutral electrolyte, since anions and cations are advected equally.
The linear dependence of conductivity on electrolyte concentration in Eq. (2.31) only
holds for dilute electrolytes. Often there is a maximum conductivity so that at higher
concentrations the electrolyte concentration again decreases with increasing elec-
trolyte concentrations.

In the absence of concentration gradients, Eq. (2.29) gives Ohm’s law 𝒊 = 𝜅𝑬,
introduced in Eq. (1.5). Equation (2.31) generalises Eq. (2.24) to include the effect of
several ions. The relative contribution of each species to the conductivity is expressed
by the ion transport number or transference number

t𝑖 =
z𝑖𝐹𝑁𝑖

𝑖

����
∇𝑐=0

=
z2
𝑖
𝐷𝑖𝑐𝑖∑

z2
𝑖
𝐷𝑖𝑐𝑖

. (2.32)

8Inserting (2.25) and assuming incompressible flow Eq. (2.A.61) and a divergence-free electric field by
Eq. (2.6) and constant 𝐷𝑖 gives

𝜕𝑐𝑖
𝜕𝑡
+

(
𝒖 + 𝒖d,𝑖

)
· ∇𝑐𝑖 = 𝐷𝑖∇2𝑐𝑖 + 𝑆𝑖 , (2.27)

an advection-diffusion-reaction equation like Eq. (2.A.62) but with an additional drift velocity 𝒖d,𝑖 =

−𝐷𝑖z𝑖∇𝜙.
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In the absence of concentration gradients ∇𝑐 = 0 this number expresses the frac-
tion of the flux that is carried by a species.9 By construction, they add up to unity∑

t𝑖 = 1.

2.4 Binary electrolytes

2.4.1 General binary electrolytes
An important class of electrolytes is the binary electrolyte, which contains only two
ions, one anion A and one cation C. Strong acids and bases show complete dissociation
of their salts upon dissolving in water

AC→ 𝜈−Az− + 𝜈+Cz+ . (2.33)

Here z− and z+ represent the ion valencies and 𝜈− and 𝜈+ are the stoichiometric
coefficients of the ions in the salt. For those in need of more practice with ion
transport, appendix 2.F considers two examples of monovalent binary electrolytes,
the acidic H+Br− used in redox flow batteries, and the alkaline K+OH− used in water
electrolysis. Footnote 7 considers the divalent electrolyte H2SO4, which has z+ = 1
and z− = −2 and 𝜈+ = 2 and 𝜈− = 1 since it dissociates into two H+ and one SO2−

4 ion.
CuSO4 on the other hand has z+ = −z− = 2 and 𝜈− = 𝜈+ = 1, because it dissociates
into one Cu2+ and one SO2−

4 ion. In general, charge conservation requires

𝜈+z+ + 𝜈−z− = 0. (2.34)

Therefore, we can define the salt concentration as

𝑐 ≡ 𝑐+
𝜈+

=
𝑐−
𝜈−
, (2.35)

equal to the number of moles of dissolved salt AC per unit volume. Note that the salt
concentration may not be equal to the ion concentration.

2.4.2 Monovalent binary electrolytes
Here we will outline the equations describing a monovalent binary electrolyte,
z+ = −z− = 𝜈+ = 𝜈− = 1, reserving the general case of arbitrary valencies and
stoichiometries for Appendix 2.G. We will assume that the ion diffusivities 𝐷− and
𝐷+ are constant. The electroneutrality condition (2.30) for a monovalent binary
electrolyte gives 𝑐+ − 𝑐− = 0, which is automatically satisfied using a single salt
concentration 𝑐 ≡ 𝑐+ = 𝑐−. Equation (2.32) gives

9Sometimes in literature this additional restriction of zero concentration gradient is not added. In this
case, instead of a material parameter, the transference number becomes dependent on the particulars of
the situation considered and which species reacts for example.
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t+ =
𝐷+

𝐷+ + 𝐷−
and t− =

𝐷−
𝐷+ + 𝐷−

, (2.36)

satisfying t+ + t− = 1. Equation (2.25) gives

𝑵+ = 𝑐𝒖 − 𝐷+
(
∇𝑐 + 𝑐∇�̄�

)
, (2.37)

𝑵− = 𝑐𝒖 − 𝐷−
(
∇𝑐 − 𝑐∇�̄�

)
. (2.38)

Equation (2.26) allows us to write

t−

(
𝜕𝑐

𝜕𝑡
+ ∇ · 𝑵+ − 𝑆+

)
+ t+

(
𝜕𝑐

𝜕𝑡
+ ∇ · 𝑵− − 𝑆−

)
= 0, (2.39)

because the expressions between brackets vanish individually.
Using t+ + t− = 1

𝜕𝑐

𝜕𝑡
+ ∇ · 𝑵 = 𝑆, (2.40)

where 𝑆 ≡ t−𝑆++𝑡+𝑆− and the salt flux

𝑵 ≡ t−𝑵+ + t+𝑵− = 𝑐𝒖 − 𝐷a∇𝑐. (2.41)

The ambipolar diffusivity or salt diffusivity 𝐷a is defined as

𝐷a ≡ t−𝐷+ + t+𝐷− =
2𝐷+𝐷−
𝐷+ + 𝐷−

. (2.42)

For an incompressible flow ∇ · 𝒖 = 0 and Eq. (2.40) can be further simplified to

𝐷𝑐

𝐷𝑡
= 𝐷a∇2𝑐. (2.43)

Note that the potential has disappeared from Eqs. (2.40) and (2.43) because
t−𝑵

mig
+ + t+𝑵

mig
− = 0 and. Remarkably, we have obtained an advection diffusion

equation, similar to that of a neutral species. However, through the boundary con-
ditions, the electric field may still affect the solution. The influence of the electric
field may also be seen in the definition of the effective diffusion coefficient, Eq. (2.42).
Due to electro-neutrality, there is an electrostatic connection between the ions, and
together they can only move as fast as the slowest ion. The faster ions are held back
by the slower ions by electrostatic forces, and the slower ions are pulled along by
the faster ones. If the ionic diffusivities are very different, 𝐷a is about twice the
lowest value.10 The reason for this doubling is that the transport by migration is
effectively included in the diffusivity. If the ion diffusivities are equal, there is no

10If 𝐷+ ≫ 𝐷− we have 𝐷a ≈ 2𝐷− while if 𝐷− ≫ 𝐷+ we have 𝐷a ≈ 2𝐷+
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electrostatic tethering between ions and the ambipolar diffusivity becomes equal to
the ion diffusivity.

The current density of Eq. (2.29) gives with 𝑐+ = 𝑐− ≡ 𝑐

𝒊 = 𝐹 (𝐷− − 𝐷+) ∇𝑐 + 𝜅𝑬, (2.44)

The first part gives the diffusion current density, proportional to the difference in
ion diffusivities. In agreement with Eq. (2.31), the conductivity reads

𝜅 =
𝐹2

R𝑇 (𝐷+ + 𝐷−) 𝑐. (2.45)

Note that, while the diffusion current is proportional to the difference in ion
diffusivities, the conduction current is proportional to their sum. Using Eq. (2.45),
Eq. (2.44) can alternatively be written as

𝒊 = −𝜅
(
𝜒
∇𝑐
𝑐
+ ∇𝜙

)
, (2.46)

where 𝜒 ≡ R𝑇
𝐹

𝐷+−𝐷−
𝐷++𝐷− . This characteristic diffusion potential is rarely much larger

than around 10 mV, so that often, but not always, the diffusion current can be
neglected. In this case, the current in a binary electrolyte can be approximately
described by Ohm’s law 𝒊 = −𝜅∇𝜙, where the conductivity depends on the ion
concentration 𝑐 through Eq. (2.45).

In case of a constant current boundary condition, we see from Eq. (2.44) that the
electric field determines the concentration gradient boundary condition to Eq. (2.40)
or (2.43).

2.4.3 Zero-flux ion
An often-encountered case in which we can analytically solve for the concentration
profile is when only one of the ions in the binary electrolyte has a non-zero flux. The
other ion has a zero flux.11

This happens, for example, when only one of the ions in a binary electrolyte
participates in a steady-state reaction. In alkaline water electrolysis, for example, the
cation K+ does not react. It will have a net average zero flux in a steady state.

Let us consider the case of a monovalent binary electrolyte with a zero-flux cation for
definiteness. The opposite case of a zero-flux anion is readily obtained by switching
all + and − signs. We consider the case of a stagnant layer of thickness 𝛿. This may
be, for example, inside a microporous diaphragm with small enough pores to avoid
fluid flow. It may also serve as a crude description of a hydrodynamic boundary
layer.

11This happens, for example, near an ion exchange membrane, which only allows cations (PEM, proton
exchange membrane) or anions (AEM, anion exchange membrane) to pass through. Such ions are ‘blocked’
while the term ‘immobile’ or ‘fixed’ ions is typically reserved for ions in a membrane.
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𝑐eq

𝑐0

𝛿

𝜙

𝑥

0

𝑐 = 𝑐eqe−�̄�

0

𝑁
mig
+ = −𝐷+𝑐�̄�′

𝑁diff
+ = −𝐷+𝑐′

𝑁
mig
− = 𝐷−𝑐�̄�′

𝑁diff
− = −𝐷−𝑐′

Figure 2.4: The concentration and potential profiles in a stagnant layer between 𝑥 = 𝛿, where
the concentration is at its bulk value 𝑐eq and 𝑥 = 0, where the concentration 𝑐 is lower. A
zero-flux-cation’s migration and diffusion fluxes cancel each other, which means they add for
the anion. Note that the arrow sizes indicate that 𝐷− > 𝐷+.

In the wall-normal direction, the assumption of a cation with zero flux in a
stagnant layer allows us to write Eq. (2.37), for the cation flux, as

𝑁+ = −𝐷+
(
𝑐′ + 𝑐�̄�′

)
= 0. (2.47)

Here𝑁+ is used to denote the vector component of𝑵+ in the 𝑥-direction, presently
under consideration, so that it can also be negative. A prime indicates a derivative
with respect to 𝑥, so 𝑐′ = 𝑑𝑐/𝑑𝑥.

Eq. (2.47) is solved by the Boltzmann distribution 𝑐 = 𝑐eqe−�̄�. This is expected,
actually by construction, since the cation with zero flux are in thermodynamic equi-
librium.12 Here 𝑐eq is the equilibrium bulk at 𝑥 = 𝛿, where we take �̄� = 0, as
illustrated in Figure 2.4.

Equation (2.38) gives the anionic flux in the 𝑥-direction as

𝑁− = −𝐷−
(
𝑐′ − 𝑐�̄�′

)
. (2.48)

This flux is now solely responsible for the ionic current density13 𝑖 = −𝐹𝑁−. Equa-
tion (2.47) gives 𝑐′ = −𝑐�̄�′, which inserted into Eq. (2.48) allows 𝑖 = 𝐷−𝐹

(
𝑐′− − 𝑐�̄�′

)
to be written as

12This is by construction, as this solution was actually used to derive the Einstein equation (2.21) used
to formulate the Nernst-Planck equations.

13We will use 𝑖 to denote the 𝑥-component of the ionic current density so 𝑖𝑥 , dropping the sub-script
𝑥. This can therefore be positive or negative. Note that this contrasts with our use of 𝑗, which we use to
denote the magnitude of the electronic current density, which is always positive.
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𝑖 = −2𝐷−𝐹𝑐�̄�′ = 2𝐷−𝐹𝑐′−. (2.49)

The current can thus be described as a pure migration current, proportional
to 𝜙′, or as a pure diffusion current density, proportional to 𝑐′, or of course the
combination of both that it really is. Both diffusion and migration will drive the
current, but because these effects contribute in a fixed proportion, we can write the
current density using either of the two terms. The reason for this fixed proportion is
that the fluxes due to diffusion and migration have to be equal and opposite for the
cation with zero flux, as described by Eq. (2.47). As a consequence, the diffusion and
migration fluxes are equal and of the same sign for the other ion. This is schematically
depicted by the arrows at the bottom of Fig. 2.4. In the case of a monovalent binary
electrolyte, exactly half the current is transported by diffusion and the other half by
migration. In Appendix 2.G.2 a general binary electrolyte is considered.

Note that we can reuse the analysis of section 2.2 concerning the concentra-
tion overpotential, where we also considered a Nernst boundary layer. Comparing
Eq. (2.49) with Eq. (2.12), we see that we have to replace 𝐷 with 2𝐷−. The limiting
current density of Eq. (2.13) then becomes

𝑗lim ≡ 𝑛𝐹
2𝐷−𝑐eq

𝛿
. (2.50)

Here 𝑛 denotes the number of electrons per reactant molecule. In the case of a redox
reaction involving a monovalent binary electrolyte, generally 𝑛 = 1. Using Eqs. (2.36)
and (2.42)

2𝐷− =
𝐷a

1 − t−
. (2.51)

The equations in this section are often found in the literature with the expression on
the right-hand side instead of the left-hand side of Eq. (2.51).14

2.5 Supporting electrolyte
In the previous section we found that for a steady-state monovalent binary electrolyte
without flow, half the current is carried by diffusion and half by migration. To
reduce the ohmic losses associated with migration, sometimes a supporting electrolyte
is added. This electrolyte is not involved in the reaction, but the additional ions
do increase the conductivity through Eq. (2.31) and therefore reduce the potential
gradient required for migration. It may seem somewhat strange at first that a species
that does not contribute to the transport can do this, so the sceptical reader is referred

14One reason may be because of its natural generalisation to multi-component electrolytes. In case of
a single ion 𝑖 with a net flux we have 𝒊 = z𝑖𝐹𝑵 𝑖 = −z𝑖𝐹𝐷𝑖

(
∇𝑐𝑖 + z𝑖 𝑐𝑖∇�̄�

)
= −z𝑖𝐹𝐷𝑖∇𝑐𝑖 − t𝑖𝜅∇𝜙. When

concentration gradients are small we can substitute the bulk relation 𝒊 = −𝜅∇𝜙 to give 𝒊 = z𝑖𝐹𝑵 𝑖 ≈
− z𝑖𝐹𝐷𝑖

1−t𝑖 ∇𝑐𝑖 . This approximate relation looks similar to the exact Eq. (2.49) that can, with Eq. (2.51), be
written as 𝑖 = −𝐷az−𝐹

1−t− 𝑐′−.
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to the derivation in Appendix 2.G.3. The main outcome of this analysis is that when the
supporting electrolyte concentration far exceeds the reactant concentration, the electric field
and its effect through migration can be neglected. Equations (2.G.104) and (2.G.106) give,
with the index 𝑖 for the reacting ion and 𝑐supp the concentration of the supporting
electrolyte,

𝑖

z𝑖𝐹
= 2𝐷𝑖𝑐supp�̄�

′ = −𝐹𝐷𝑖𝑐
′
𝑖 . (2.52)

As in the case of a binary electrolyte, Eq. (2.49), the current density can be written
in terms of a pure diffusion current or a migration current, or a combination, because
they are proportional. The first relation in Eq. (2.52) is similar to the first of Eq. (2.49)
for a binary electrolyte. The difference is however that the concentration in Eq. (2.52)
is not that of the reacting ion, but the concentration of the supporting electrolyte.
Therefore, the supporting electrolyte concentration can be increased to reduce the
potential gradient �̄�′. The second expression in Eq. (2.52) differs from that in Eq. (2.49)
in that the additional factor two is missing.

The reason is that the potential gradient is strongly reduced due to the presence
of the supporting electrolyte. Therefore, there can be little migration and the current
is determined solely by diffusion. This reduces the limiting current density to

𝑗lim ≡ 𝑛𝐹
𝐷𝑖𝑐eq

𝛿
, (2.53)

so without the additional factor two of Eq. (2.50) due to migration. A small downside
of adding a supporting electrolyte is thus a reduced limiting current density.

Note that the negligible electric field strength allows the reacting ion concentration
to be described by an advection-diffusion equation. Equation (2.27) without the effect
of migration becomes (2.3). The difference with the advection-diffusion equation
derived for a binary electrolyte, Eq. (2.43), is the diffusion coefficient. Instead of the
binary diffusion coefficient, in the presence of a supporting electrolyte, it is the ion
with a non-zero flux whose diffusivity appears. Also, the boundary conditions will
be different. We summarise the differences between the case of a single ion with a
non-zero flux in a binary electrolyte and a supporting electrolyte in Table 2.2.

2.6 Transient diffusion, constant current, Sand’s analy-
sis

We end this chapter by considering our first transient case. Shortly after a current
is switched on, a growing boundary layer will arise in a stagnant electrolyte as
illustrated in Figure 2.5. An analytical solution can be derived for a semi-infinite
domain, as is outlined in Appendix 2.H. However, a more heuristic approach [4] is
almost as accurate but arguably more insightful. Consider a neutral reactant or a
reacting ion in a supporting electrolyte, with concentration 𝑐 and diffusion coefficient
𝐷. The reactant diffusive flux in the 𝑥-direction 𝑁𝑥 = −𝐷𝑐′ < 0 so that the associated
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Binary Supporting
electrolyte electrolyte

Diffusion coefficient 𝐷a 𝐷𝑖

Conductivity |𝑖 |/|∇𝜙 | 2𝐷𝑖
𝐹2

R𝑇 𝑐𝑖 2𝐷𝑖z𝑖
𝐹2

R𝑇 𝑐supp
Boundary condition for 𝑐′

𝑖
−𝑖/2𝐹𝐷𝑖z𝑖 −𝑖/𝐹z𝑖𝐷𝑖

Limiting current density 𝑗lim 2𝑛𝐹𝐷𝑖 |𝑐′0 | 𝑛𝐹𝐷𝑖 |𝑐′𝑖 ,0 |

Table 2.2: The differences between a monovalent binary electrolyte and a supporting elec-
trolyte with concentration 𝑐supp in which a single non-zero-flux-ion with charge number z𝑖
and a concentration 𝑐𝑖 carries the current. In the case of a binary electrolyte, generally, the
number of electrons per reactant molecule 𝑛 = |z𝑖 |.

𝑡

𝑐0

𝑐eq 𝑥𝛿

Figure 2.5: Reactant concentration profiles 𝑐(𝑥, 𝑡) for various times 𝑡 due to step change in
current over time. The shaded blue triangle graphically depicts the linearisation approximation
used Eq. (2.56).

current is given by 𝑗 = 𝑛𝐹 |𝑁𝑥 |. We consider the case in which the electrode potential
is adjusted such that the current density becomes constant. Equation (2.52) gives the
following boundary condition

𝑐′0 =
𝑗

𝑛𝐹𝐷
. (2.54)

Here a subscript 0 indicates the electrode surface at 𝑥 = 0. Integrating Eq. (2.4) with
respect to time 𝑡 and dividing by the electrode area 𝐴 gives the number of moles of
reactant consumed per unit area as∫ (

𝑐eq − 𝑐
)
𝑑𝑥 = |𝑁𝑥 |𝑡 =

𝑗𝑡

𝑛𝐹
. (2.55)

The integral can be accurately approximated by the shaded area indicated in Fig-
ure 2.5. The area of this triangle is given by half the boundary layer thickness 𝛿 times
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𝑡Sand
𝑡

𝜂 = 𝑏 ln
(

𝑗

𝑗∗(1−𝑗/𝑗lim)

)

Figure 2.6: The concentration overpotential increases with time and diverges as the surface
concentration drops to zero at 𝑡 = 𝑡Sand.

𝑐eq − 𝑐0 = 𝑐′0𝛿, so

𝑐′0𝛿
2

2 ≈ 𝑗𝑡

𝑛𝐹
. (2.56)

This gives an expression for the boundary layer thickness 𝛿 ≈
√

2𝐷𝑡, which is close
to the exact result derived in the appendix, Eq. (2.H.109):

𝛿 ≈ 2
√
𝐷𝑡/𝜋. (2.57)

The surface concentration 𝑐0 = 𝑐eq − 𝛿𝑐′0 follows, using Eq. (2.54), as

𝑐0 = 𝑐eq

(
1 − 𝑗

𝑗lim

)
, (2.58)

where

𝑗lim =
𝑛𝐹𝐷𝑐eq

𝛿
=
𝑛𝐹𝐷𝑐eq

2
√
𝐷𝑡/𝜋

. (2.59)

The surface concentration 𝑐0 decreases in time according to Eq. (2.58). This gives
rise to a concentration overpotential that increases in time, as described by Eq. (2.14).
When the concentration 𝑐0 approaches zero, the overpotential diverges. This is
schematically shown in Figure 2.6.

The requested constant current density can be maintained by increasing the over-
potential. However, after some time the electrode concentration 𝑐0 = 0 and the
current density will have to decrease in time as the boundary layer thickness 𝛿 con-
tinues to increase while the concentration difference 𝑐eq = 𝑐0 cannot be increased
further. These limiting current conditions are reached after a time called Sand’s time
given by solving 𝑗 = 𝑗lim, using Eq. (2.59) as
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𝑡Sand =
𝜋𝐷

4𝑗2
(
𝑛𝐹𝑐eq

)2
. (2.60)

We note that when one of the ions of a binary electrolyte reacts, this same analysis
holds using 𝐷 = 2𝐷𝑖 , with 𝐷𝑖 the diffusivity of the reacting ion. In this case, the
ohmic drop will increase in time in addition to this overpotential activation since the
ionic conductivity is proportional to the decreasing electrolyte concentration.

2.7 Summary

• The Nernst-Planck flux 𝑵 𝑖 = 𝑐𝑖𝒖 − 𝐷𝑖

(
∇𝑐𝑖 + z𝑖𝑐𝑖

𝐹
R𝑇∇𝜙

)
(2.25) of a dilute ion

concentration accounts for advection, diffusion, and migration, respectively. In
the absence of flow and concentration gradients, the conductivity 𝜅 = 𝒊/𝑬 =

−∑
z𝑖𝐹𝑵 𝑖/∇𝜙 = 𝐹2

R𝑇

∑
z2
𝑖
𝐷𝑖𝑐𝑖 (2.31). A zero-flux ion with 𝑵 𝑖 = 0 in the

absence of flow satisfies the Boltzmann distribution 𝑐𝑖 ∝ e−
z𝑖 𝐹

R𝑇 𝜙.

• The general conservation equations 𝜕𝑐𝑖
𝜕𝑡 = −∇ · 𝑵 𝑖 (2.26) for a binary electrolyte

and incompressible flow reduce to an advection-diffusion equation 𝜕𝑐
𝜕𝑡 +𝒖 ·∇𝑐 =

𝐷a∇2𝑐 (2.43) with the ambipolar diffusivity 𝐷a =
2𝐷+𝐷−
𝐷++𝐷− . Without flow and

for a monovalent cation with no flux, the anion flux 𝑵− = 2𝐷−𝑐∇ 𝐹
R𝑇𝜙 =

−2𝐷−∇𝑐 (2.49) equals twice the diffusion or migration flux since both are equal
because 𝑵+ = 0. A supporting electrolyte strongly increases the conductivity,
suppressing the electric field and associated migration, halving the limiting
current density.

• The concentration overpotential 𝑏ln
(
𝑐eq
𝑐

)
(2.10) diverges as 𝑐 approaches zero.

Without advection or migration, this happens at a limiting current density 𝑗lim =
𝑛𝐹𝐷𝑐eq

𝛿 (2.13). At constant current, the boundary layer thickness 𝛿 ≈ 2
√
𝐷𝑡/𝜋 is

obtained after Sand’s time 𝑡Sand = 𝜋𝐷
4𝑗2

(
𝑛𝐹𝑐eq

)2 (2.60).
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2.8 Exercises

Exercise 2.1
Consider a fuel cell cathode in which oxygen, with a concentration 𝑐 in air, reacts
with protons to water.
a. What is the number 𝑛 of electrons consumed per oxygen molecule in this reaction?
b. Give an expression for the limiting current density, assuming the oxygen molecules

have to diffuse through an air layer of thickness 𝐿 with a diffusivity 𝐷.
c. Now assume that this ‘gas diffusion layer’ consists of straight channels with a

volume fraction 𝜖 in a solid. Give an expression for the limiting current density.

Exercise 2.2
Consider the porous separator inside a Li-ion battery, filled with the monovalent bi-
nary electrolyte Li+PF−6 . The electrolyte effective conductivity is 𝜅 = 1.3 S/m. The
cathode where Li+ is reduced is at 𝑥 = 0 on the left, and the anode where it is oxidised
is at 𝑥 = 𝐿 on the right. Assume: 1D, steady-state, no flow, a temperature of 300 K,
and a constant average electrolyte concentration 𝑐.
a. Derive an expression for the Li+ diffusivity 𝐷+ in terms of the ambipolar diffu-

sivity 𝐷a and the transfer coefficient t+ ≡ 𝐷+
𝐷++𝐷− .

b. Derive the electrolyte concentration profile for a given current density 𝑗.
c. Use the given conductivity 𝜅 = 1.3 S/m and cation transfer number t+ = 0.4 to

give a numerical value for the ambipolar diffusivity 𝐷a.
d. Assuming 𝐿 = 200 µm, what is the associated characteristic time-scale for diffu-

sion 𝑡 ∼ 𝐿2/𝐷a? Is the assumption of steady-state warranted? Give an expression
for the magnitude of the limiting current density

Exercise 2.3
In electrolysers, a concern is hydrogen ‘crossing over’ through the membrane or sep-
arator to the anode, where at sufficiently high concentrations it could reach the ’lower
explosion limit’ of about 4 vol% hydrogen in oxygen.
a. If hydrogen is present at a concentration 𝑐0 at the cathode and an approximately

zero concentration at the anode, calculate the diffusive flux 𝑁0 through a mem-
brane with thickness 𝐿 and effective diffusivity 𝐷

b. Now if there is a small pressure difference, perhaps because after start-up the
pressure rises faster at the cathode due to the larger volume of gases produced,
there may be a small flow velocity 𝑢 through the separator from cathode to
anode. The hydrogen flux in the 𝑥-direction from 𝑥 = 0 at the cathode to 𝑥 = 𝐿

at the anode is now given by 𝑁 = 𝑢𝑐 − 𝐷 𝑑𝑐
𝑑𝑥

. Assuming a steady state, give the
concentration profile through the membrane.
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c. Give an expression for the flux 𝑁 in terms of the Péclet number Pe = 𝑢𝐿/𝐷 and
the flux 𝑁0 without advection.

d. Considering a typical alkaline water electrolyser separator with an effective oxy-
gen diffusion coefficient 𝐷 = 10−9 m2/s and thickness 𝐿 = 0.5 mm, at what
velocity is diffusive flux doubled due to advection?

Exercises 2.4-2.19
Fill in the missing steps in the main text, indicated by the symbol .
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2.A Examples of conservation equations

2.A.1 Mass
Eq. (2.1) is a general conservation equation that can describe various conserved
quantities, such as mass. Instead of the molar concentration 𝑐 we can use the density
𝜌 [kg/m3]. Without diffusion, the mass flux reads 𝜌𝒖 so that without mass sources,
𝑆 = 0, Eq. (2.1) gives 𝐷𝜌/𝐷𝑡 = −𝜌∇ ·𝒖. Moving along with the fluid flow, the density
of most fluids stays approximately constant so that 𝐷𝜌/𝐷𝑡 = 0. Even compressible
fluids often approximately satisfy this criterion at flow velocities well below the speed
of sound. Combining these two equations gives the equation describing incompressible
flow as

∇·𝒖= 0. (2.A.61)

In this book, generally, divergence-free flow is assumed to hold.

2.A.2 Heat
The thermal diffusivity is expressed as 𝛼 = 𝜆/𝜌𝐶p [m2/s] with 𝜆 the thermal con-
ductivity [W/m/K] and 𝐶p [J/kg/K] the specific heat capacity. Replacing 𝑐 by the
volumetric thermal energy 𝜌𝐶p𝑇 [J/m3] and 𝐷 by 𝛼 in Eq. (2.2) gives without flow,
𝒖 = 0, and constant 𝜌𝐶p

𝑵 = −𝜆∇𝑇, (2.A.62)

which is called Fourier’s law. Eq. (2.3) becomes, again for constant 𝜌𝐶p

𝐷𝑇

𝐷𝑡
= 𝛼∇2𝑇 +

𝑆

𝜌𝐶p
. (2.A.63)

The heat source 𝑆 [W/m3] may include for example viscous heating or a source
from an exothermic reaction.

65
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2.A.3 Momentum
Equation (2.1) can also be used to describe the conservation of momentum, by replac-
ing 𝑐 in Equation (2.1) with the momentum density ρ𝒖. Because this is a vector, the
flux 𝑁𝑁𝑁 is replaced by a tensor 𝝉, representing the momentum flux or force per unit
area. For Newtonian fluids the viscous stress tensor, 𝜏𝜏𝜏 = 𝜇

(
∇𝒖 + ∇𝒖T) , is proportional

to the dynamic viscosity 𝜇. An additional force in fluids is due to pressure 𝑝, which
adds 𝑝𝑰, with 𝑰 the unit tensor. Finally adding the advective part ρ𝒖𝒖 gives

𝜕𝜌𝒖

𝜕𝑡
= −∇ ·

(
𝜇

(
∇𝒖 + ∇𝒖T

)
+ 𝑝𝑰 + 𝜌𝒖𝒖

)
+ 𝑆. (2.A.64)

For a constant density and viscosity, assuming the flow is incompressible as described
by Eq. (2.A.61), using some vector and tensor relations this can be simplified to the
incompressible Navier-Stokes equation

𝐷𝒖
𝐷𝑡

= 𝜈∇2𝒖 −
∇𝑝
𝜌
+ 𝑆

𝜌
, (2.A.65)

where 𝜈 = 𝜇/𝜌 is the kinematic viscosity. The source term 𝑆/𝜌 represents any
additional force per unit mass, for example, due to gravity 𝑆

𝜌= −𝑔 �̂� for a gravitational
acceleration 𝑔 [m/s2] in the negative 𝑧-direction.

2.B Stefan velocity
The fickian diffusion flux in Eqs. (2.2) and (2.22) assumes that the concentration of
the transported species 𝑐 is much smaller than the total concentration 𝐶 of the gas
or liquid through which it is transported. If this were not the case, the concentration
could influence the density, diffusivity, and other material parameters. Additionally,
the flow velocity 𝒖 cannot be seen as independent and is impacted by the moving
species. To illustrate this, we consider the following example of a layer in which a
species with a concentration 𝑐 is transported from 𝑥 = 0 to 𝑥 = 𝐿 with constant flux,
for example, because it is produced in a reaction and otherwise accumulates. Another
species with concentration 𝑐 is assumed to have zero flux �̃�𝑥 = 𝑢𝑐 − 𝐷𝑐′ = 0, where
𝐷 is the mutual diffusion coefficient. Especially in gases, to a good approximation,
the total concentration 𝐶 = 𝑐 + 𝑐 is constant. This allows us to write

�̃�𝑥 = 𝑢 (𝐶 − 𝑐) + 𝐷𝑐′ = 0, (2.B.66)

so that the flux of the species with flux reads

𝑁𝑥 = 𝑢𝑐 − 𝐷𝑐′ = 𝑢𝐶. (2.B.67)

We can solve the differential equation (2.B.66) to give

𝑐(𝑥) = 𝐶 − (𝐶 − 𝑐(0)) e𝑢𝑥/𝐷 . (2.B.68)
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𝐶 = 𝑐 + 𝑐

𝑐

𝑐

𝑥
0 𝐿

𝒖

Figure 2.7: The concentrations 𝑐 and 𝑐 of a species, with and without flux, respectively,
adding up to a constant concentration 𝐶. The mass transport of the finite-flux species to the
right introduces a Stefan flow velocity 𝒖 that counteracts the diffusion flux of the zero-flux
species.

So we see that to maintain a zero flux of one species a velocity is induced, which
makes the concentration of the reacting species vary exponentially with 𝑥. This
velocity arises due to the transport of the mobile species and is called the Stefan
velocity. As the concentration 𝑐(𝑥) decreases in the 𝑥-direction, the concentration
𝑐 has to increase. The Stefan velocity counteracts the diffusion flux that would
otherwise force the zero-flux species to 𝑥 = 0. Solving Eq. (2.B.68) for 𝑢 and inserting
in Eq. (2.B.67) gives, evaluated at 𝑥 = 𝐿

𝑁𝑥 =
𝐷𝐶

𝐿
ln

(
𝐶 − 𝑐(𝐿)
𝐶 − 𝑐(0)

)
. (2.B.69)

For low concentrations 𝑐 ≪ 𝐶we can linearise this to give Fick’s law𝑁𝑥 =
𝐷
𝐿 (𝑐(0) − 𝑐(𝐿))

and Eq. (2.B.68) to give the linear profile 𝑐(𝑥) = 𝑐(0) − 𝑢 𝐶−𝑐(0)𝐷 𝑥.

2.C Mobility of a macroscopic particle
For a mass moving with a velocity 𝑢 relative to a fluid in rest, in response to a force
𝑭 , we can write Newton’s second law as follows:

𝑚
𝑑𝒖
𝑑𝑡

= 𝑭 + 𝑭d. (2.C.70)

Here 𝑭d is a frictional force or a drag force. Larger objects will experience a drag
force approximately proportional to their velocity squared, due to inertial forces. For
smaller particles viscous forces dominate. For small spherical particles, their velocity
magnitude 𝑢 relative to the fluid velocity and diameter 𝑑 may be small enough that
their particle Reynolds number Rep =

𝜌𝑢𝑑
𝜇 ≪ 1. In this case, the flow around them,
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𝑭

𝑑

drag, 𝑭d

𝑢d

(
1 − e−𝑡/τ

)

τ = 𝑚M

0 𝑡

Figure 2.8: An example particle with diameter 𝑑 moving upwards due to a force 𝑭 . A drag
force 𝑭d = −𝒖d/M acts to decelerate the particle, resulting in the shown velocity profile.

called Stokes flow, can be solved analytically neglecting fluid inertia. The resulting
Stokes drag force is given by

𝑭d = −3𝜋𝜇𝑑𝒖. (2.C.71)

This drag force is opposite and proportional to the particle velocity 𝒖 relative to
the fluid, which we assume here to have a vanishing or at least constant velocity. In
steady state 𝑑𝒖/𝑑𝑡 = 0 and Eq. (2.C.70) gives 𝑭 = −𝑭d = 3𝜋𝜇𝑑𝒖d where 𝒖d is the
steady-state velocity. The subscript d here stands for drag, or for drift considered in
the next section. Comparing with Eq. (2.15) we see that

M =
1

3𝜋𝜇𝑑 . (2.C.72)

So the mobility of a small spherical particle is inversely proportional to its size and
the liquid viscosity.

Solving Eq. (2.C.70) with initial condition 𝒖 = 0 at 𝑡 = 0 gives

𝒖 (𝑡) = 𝒖𝑑
(
1 − e−

𝑡
τ

)
, (2.C.73)

where 𝒖d = M 𝑭 is the final steady-state velocity and the relaxation time τ = 𝑚M is
proportional to both the object’s mass and mobility. With 𝑚 = 𝜌p𝜋𝑑3/6 the product
of the particle density 𝜌p and its volume, and Eq. (2.C.72) we obtain 𝜏 =

𝜌p𝑑2

18𝜇 . With
a typical 𝜇/𝜌p = 10−6 m2/s a particle with a diameter of 𝑑 = 1 µm gives 𝜏 ≈ 6 · 10−8

s and a particle with a diameter of 𝑑 = 1 mm has a relaxation time of 𝜏 ≈ 0.06 s.
Therefore, for small enough particles, the acceleration phase is only very short and
assuming a steady-state force equilibrium with a constant particle velocity is a good
approximation under many circumstances.
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2.D Simple conductance model
We consider a constant charge density 𝜌𝑐 of charge carriers, for example, electrons in
a wire or transported ions in an electrolyte. An equal and opposite charge density
of counterions will usually ensure a zero charge density. From the analysis of a
macroscopic particle in the previous section 2.C, we found that the mobility M = 𝜏/𝑚
is proportional to the force equilibration time 𝜏 and inversely proportional to the
particle mass. This will also hold for electrons or ions if we re-interpret 𝜏 as the
characteristic time between collisions. By Eq. (2.C.71), a particle experiencing an
electric force 𝑭 = 𝑞𝑬, Eq. (1.1), gives a drift velocity 𝒖d = M 𝑭 = 𝑞𝜏

𝑚 𝑬. The charge
flux or the current density reads 𝒊 = 𝜌𝑐𝒖𝒅 in agreement with the general Eq. (2.2).
We thus naturally recover Ohm’s law 𝒊 = 𝜅𝑬 which states a proportionality between
current density and electric field. The conductivity

𝜅 =
𝜌𝑐𝑞𝜏

𝑚
. (2.D.74)

In this model, a simplification of the model proposed in 1900 by Paul Drude, the
conductivity is proportional to the density of charge carriers and their charge squared,
since also 𝜌𝑐 is proportional to the carrier charge. This is in agreement with the result
of Eq. (2.31), derived from the Nernst-Planck equation.

2.E Boltzmann atmosphere

𝑧

𝜌

𝜌0

Figure 2.9: Density distribution 𝜌(𝑧) as a function of the height of an ideal isothermal
atmosphere satisfying the Boltzmann distribution.

For those readers seeking to get more familiar with the Boltzmann distribution,
we consider here the example of an isothermal atmosphere satisfying the ideal gas
law. The electric force 𝑭 = −𝑞∇𝜙 has a strong resemblance to the gravitational force,
which is also a conservative force. The gravitational force is also proportional to the
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gradient of a scalar, the gravitational potential. An obvious difference is of course
that mass, unlike charge, can only be positive.

First, we obtain the hydrostatic force balance assuming zero flow velocity 𝒖 = 0
in the Navier-Stokes Equation (2.A.65) and considering only the direction of gravity,
the 𝑧-direction:

𝑑𝑝

𝑑𝑧
= −𝜌𝑔. (2.E.75)

The ideal gas law can be written as:

𝑝 =
R𝑇
Vm

=
𝜌R𝑇
𝑀

, (2.E.76)

where Vm = 𝑀/𝜌 [m3/mol] is the molar volume, with 𝑀 [kg/mol] the molarity.
Inserting Eq. (2.E.76) in Eq. (2.E.75) gives

𝑑𝜌

𝑑𝑧
= − 𝜌

𝐻
→ 𝜌 = 𝜌0e−

𝑧
𝐻 with 𝐻 =

R𝑇
𝑔𝑀

. (2.E.77)

The density in an isothermal atmosphere thus satisfies the Boltzmann distribution
and decreases exponentially with height 𝑧 from its value 𝜌0 at ground level, 𝑧 = 0.
The characteristic atmosphere “height” 𝐻 ≈ 9 km, using the molarity of air and
𝑇 ≈ 300 K. Although our atmosphere is far from isothermal, most mass is roughly
within twice this distance.

The argument of the exponent can be written as − 𝑧
𝐻 = − Ea

R𝑇 = − U
𝑘B𝑇

with Ea =

𝑔𝑀𝑧 and U = 𝑔𝑚𝑧 the average gravitational potential energy per mole or particle,
respectively. Therefore, an isothermal ideal gas under the influence of a conservative
force satisfies the Boltzmann distribution. The premise of section 2.3.1 is that ions in
an electric field will equally satisfy this distribution.

2.F Balance sheets

2.F.1 Example: hydrogen-bromine redox flow battery
Consider a membrane-less cell with two electrodes far apart and the liquid electrolyte
in between well-mixed. In this case, the electrolyte concentration is fairly constant in
the centre, while concentration gradients can arise in thin boundary layers near the
electrode, see Figure 2.10. Often only one of the ions in an electrolyte participates in
a reaction. As an example, we consider the charging reaction of a hydrogen-bromine
(H2Br2) redox flow battery:15

2Br− → 2e− + Br2 , (2.F.78)
2e− + 2H+ → H2. (2.F.79)

15Note that in Fig. 2.10 we draw the oxidation reaction on the left and the reduction reaction on the right.
In batteries, the electrode at which the oxidation reaction occurs is called the anode during discharging,
but the cathode during charging. So, as an exception, we here have the cathode on the left.
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0.8H+

0.2Br− 0.2Br−

0.2H+

0.8Br−

0.8H+

Well-mixed bulk
𝑐(𝑥)

Br− → . . . H+ → . . .

Figure 2.10: The charging of a H2-Br2 flow battery, schematically split into a bulk region
with only migration and a boundary layer region with also diffusion. The solid black arrows
denote migration fluxes while the grey dashed arrows indicate diffusion fluxes. The difference
in transference numbers t+ = 0.8 and t− = 0.2 is compensated by diffusion in the boundary
layers near the electrodes.

Because of its smaller size, the diffusivity of H+ is substantially higher than that of Br−
so that the H+ ions (protons) have an approximate transference number of t+ ≈ 0.8.
In the well-mixed bulk, the electrolyte concentration is approximately constant, and
diffusion does not play a role. As shown in Eq. (2.32), transference numbers can be
used to indicate the fraction of the current carried by a particular ion in the absence of
concentration gradients. Therefore, migration transports about four times as much
H+ in the direction of the electric field, to the right in Figure 2.10, as it transports
Br− in the opposite direction. However, by the reactions of Eqs. (2.F.78) and (2.F.79),
equal amounts of H+ and Br− are consumed, so how can this be?

At the electrodes, there will be no fluid flow possible so the well-mixed condition
cannot extend all the way to the electrode and there will be a diffusion boundary
layer close to the electrodes. Here, diffusion will have to make up for the difference
in transference number. Near the left Br−-consuming electrode a concentration gra-
dient will arise that will aid the transport of Br− but oppose the transport of H+,
cancelling the migration flux of H+. Similarly, at the right H+-consuming electrode,
this concentration gradient will be much smaller since a smaller migration flux of
Br− has to be cancelled.

Note that in these reactions the electrolyte is consumed so that, to obtain a steady
charging reaction, fresh electrolyte has to be supplied by advection. A flow velocity
parallel to the electrodes will add additional fluxes, but since these will not contribute
to the current, they do not impact the general picture of Fig. 2.10.

2.F.2 Example: alkaline water electrolysis
A typical electrolyte used in alkaline water electrolysis is potassium hydroxide, which
dissociates into K+ ions and OH− ions. The diffusivity of K+ ions is about three times
smaller than that of OH− so that t+ ≈ 0.25 and t− ≈ 0.75. In the reactions given by
Eqs. (1.14) and (1.15), the potassium ion does not participate, so in steady-state and
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4 OH− −−−→ 4 e− +O2 + 2 H2O

K+

OH−

𝑐
𝑡

2 H2O + 2 e− −−−→ H2 + 2 OH−

Figure 2.11: The evolution from an initial concentration profile 𝑐 to a steady state in alkaline
water electrolysis. Initially, the situation is similar to that in Fig. 2.10: in the bulk, there
are no concentration gradients and there is only migration. The transported K+ does not
participate in the reaction but moves from the anode on the left, where OH− is consumed, to
the cathode on the right where it is produced, to maintain charge neutrality. In the boundary
layers, a concentration gradient arises in which diffusion and migration cancel for K+, but
add for OH−. In the final steady state, this holds throughout the electrolyte.

in the absence of flow, it has zero flux. Therefore, a concentration gradient arises
that assists the transport of OH− and completely cancels that of K+. Figure 2.11
schematically shows the evolution of the concentration profile over time in an un-
stirred electrolyte, inside a porous diaphragm for example. Initially, diffusion will
only play a role in very thin boundary layers near the electrodes. Eventually, the
concentration profile will be fully developed and the concentration gradient will be
constant. In this steady state, the diffusion flux exactly cancels the migration flux of
K+ so that the net flux is zero. For the OH− ion, the diffusion and migration fluxes
add, as is considered in more detail in section 2.4.3.

2.G General binary electrolytes

2.G.1 General equations
Here we consider the case of a general binary electrolyte

AC→ 𝜈−Az− + 𝜈+Cz+ , (2.G.80)

with arbitrary ion charge numbers z+ and z− and stoichiometries 𝜈+ and 𝜈−. Charge
conservation requires

𝜈+z+ + 𝜈−z− = 0. (2.G.81)

We can define the salt concentration as

𝑐 ≡ 𝑐+
𝜈+

=
𝑐−
𝜈−
. (2.G.82)

Electroneutrality requires 𝜌𝑞 = 𝐹
∑
𝑧 𝑖𝑐𝑖 or with 𝑖 = +,−
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z+𝑐+ + z−𝑐− = 0. (2.G.83)

Using this in in Eq. (2.32) gives

t± =
z2
±𝐷±𝑐±

z2
+𝐷+𝑐+ + z2−𝐷−𝑐−

=
|𝑧± |𝐷±

z+𝐷+ − z−𝐷−
. (2.G.84)

The conservation equations for the cations and anions read, respectively:

𝜕𝑐+
𝜕𝑡
+ ∇ · 𝑵+ − 𝑆+ =

𝜕𝑐−
𝜕𝑡
+ ∇ · 𝑵− − 𝑆− = 0, (2.G.85)

where, from Eq. (2.25)

𝑵+ = 𝑐+𝒖 − 𝐷+
(
∇𝑐+ + z+𝑐+∇�̄�

)
, (2.G.86)

𝑵− = 𝑐−𝒖 − 𝐷−
(
∇𝑐− + z−𝑐−∇�̄�

)
. (2.G.87)

Therefore,

t−
𝜈+

(
𝜕𝑐+
𝜕𝑡
+ ∇ · 𝑵+ − 𝑆+

)
+ t+

𝜈−

(
𝜕𝑐−
𝜕𝑡
+ ∇ · 𝑵− − 𝑆−

)
= 0. (2.G.88)

With t+ + t− = 1 and some vector algebra this gives

𝜕𝑐

𝜕𝑡
+ ∇ · 𝑵 + 𝒊 ·

∇t+
𝐹

= 𝑆, (2.G.89)

where 𝑆 ≡ t−𝑆+
𝜈−
+ t+𝑆−

𝜈+
and

𝑵 ≡ t−𝑵+
𝜈+
+ t+𝑵−

𝜈−
= 𝑐𝒖 − 𝐷a∇𝑐, (2.G.90)

and the ambipolar diffusivity 𝐷a is defined as:

𝐷a ≡ t−𝐷+ + t+𝐷− =
(z+ − z−)𝐷+𝐷−
z+𝐷+ − z−𝐷−

. (2.G.91)

The current density of Eq. (2.29) gives, with 𝑐− = z+𝑐+/z− from Eq. (2.34),

𝒊 = 𝐹 (𝐷− − 𝐷+)z+∇𝑐+ + 𝜅𝑬, (2.G.92)

where, from Eq. (2.31), the conductivity reads

𝜅 =
𝐹2

R𝑇 (z+𝐷+ − z−𝐷−)z+𝑐+. (2.G.93)
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𝑐𝑖 ,eq 𝑐𝑖

𝐿

𝜙

𝑥 0
0

𝑐±𝑐±,eq

Figure 2.12: The nernstian layer configuration we consider for the description of a ternary
electrolyte. An ion 𝑖 reacts at 𝑥 = 0, while the supporting electrolyte with concentration 𝑐±
has zero flux.

2.G.2 Nernstian boundary layer with a cation with zero flux
Without flow, Eq. (2.G.86) for a zero-flux cation gives

𝑁+
𝜈+

= −𝐷+
(
𝑐′ + z+𝑐�̄�

′) = 0. (2.G.94)

The solution is a Boltzmann distribution 𝑐 = 𝑐eqe−z+�̄�, with 𝑐eq the concentration
at 𝑥 = 𝛿, where we take �̄� = 0, as illustrated in Figure 2.4. The anionic flux

𝑁−
𝜈−

= −𝐷−
(
𝑐′ + z−𝑐�̄�

′) , (2.G.95)

determines 𝑖 = z−𝐹𝑁− . The Boltzmann distribution gives 𝑐′ = −z+𝑐�̄�′ so

− 𝑖

𝐷−𝑧−𝜈−𝐹
= 𝑐′ + z−𝑐�̄�

′ = 𝑐′
(
1 − z−

z+

)
= (z− − z+) 𝑐�̄�′, (2.G.96)

or

𝑖 = −𝐷−z−𝐹 (z− − z+) 𝑐−�̄�′ = −𝐷−
(
1 − z−

z+

)
z−𝐹𝑐

′
−. (2.G.97)

The additional factor 1−z−/z+ represents the additional transport due to migration.
This becomes the factor two used for a monovalent binary electrolyte as obtained in
Eq. (2.49). The limiting current of Eq. (2.13) is thus also proportionally larger

𝑗lim ≡ 𝑛𝐹

(
1 − z−

z+

)
𝐷−𝑐eq

𝐿
. (2.G.98)



CHAPTER 2. TRANSPORT 75

2.G.3 Ternary electrolyte
We now consider what happens if we add a third species. In this ternary electrolyte,
we assume that only one species, with concentration 𝑐𝑖 , is transported; for example,
because it reacts at 𝑥 = 0. The remaining binary electrolyte with concentrations 𝑐+
and 𝑐− is assumed to satisfy 𝑁+ = 𝑁− = 0. This gives a Boltzmann distribution for
the zero-flux cations

𝑐+ = 𝑐+0exp
(
−z+�̄�

)
, (2.G.99)

and the zero-flux anions

𝑐− = 𝑐−0exp
(
−z+�̄�

)
. (2.G.100)

According to electroneutrality

𝑐𝑖 = −
z+𝑐+ + z−𝑐−

z𝑖
. (2.G.101)

Since the 𝑖-th species is the only one contributing to the current, we have 𝑗 =
z𝑖𝐹𝑁𝑖 . The Nernst-Planck equation (2.25) in the absence of advection (𝒖 = 0) gives
𝑁𝑖 = −𝐷𝑖

(
𝑐′
𝑖
+ z𝑖𝑐𝑖 �̄�′

)
so that

𝑖

−z𝑖𝐹𝐷𝑖
= 𝑐′𝑖 + 𝑐𝑖z𝑖 �̄�

′ =

(
𝑑𝑐𝑖

𝑑�̄�
+ 𝑐𝑖z𝑖

)
�̄�′ (2.G.102)

=

(
z+𝑐+

(
z+
z𝑖
− 1

)
+ z−𝑐−

(
z−
z𝑖
− 1

))
�̄�′. (2.G.103)

In the second step, we used that 𝑐𝑖 through Eqs. (2.G.99), (2.G.100), and (2.G.101)
is a function of �̄� so we can use the chain rule to write 𝑑𝑐𝑖

𝑑𝑥
=

𝑑𝑐𝑖
𝑑�̄�

𝑑�̄�
𝑑𝑥

. In the final

step we used Eqs. (2.G.99) and (2.G.100), which give 𝑑𝑐+
𝑑�̄�

= −z+𝑐+ and 𝑑𝑐−
𝑑�̄�

= −z−𝑐−,
respectively.

For example, in case of a monovalent electrolyte with a reacting anion we have
z𝑖 = z− = −z+ = −1 so that z−/z𝑖 = 1, and z+/z𝑖 = −1. In this case Eq. (2.G.103)
simplifies to

𝑖 = −2𝐹𝐷𝑖𝑐+�̄�
′. (2.G.104)

The current is proportional to the ion diffusivity 𝐷𝑖 as expected. However, in-
terestingly and importantly, the current is proportional to the supporting binary
electrolyte concentration 𝑐+ = 𝑐− rather than the concentration 𝑐𝑖 . Equation (2.G.103)
gives

𝑖

𝐹𝐷𝑖
= 𝑐′𝑖 − 𝑐𝑖 �̄�

′ = 𝑐′𝑖

(
1 + 𝑐𝑖

2𝑐+ − 𝑐𝑖

)
, (2.G.105)
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where, in the second step we compared with Eq. (2.G.104) to give 𝑐′
𝑖
= (𝑐𝑖 − 2𝑐+) �̄�′ or

�̄�′ =
𝑐′
𝑖

𝑐𝑖−2𝑐+ . Sometimes a large surplus of binary electrolyte, a supporting electrolyte,
is added to a reacting species. In this case 𝑐𝑖

2𝑐+−𝑐𝑖 ≈
𝑐𝑖

2𝑐+ ≪ 1, and Eq. (2.G.105) can be
further simplified into:

𝑖 = 𝐹𝐷𝑖𝑐
′
𝑖 . (2.G.106)

As in the case of a binary electrolyte, we can again write the current density in
terms of only diffusion, now with only the properties of the reacting ion playing
a role. We have �̄�′ =

𝑐′
𝑖

𝑐𝑖−2𝑐+ ≈
𝑐′
𝑖

−2𝑐+ so that with 𝑐+ ≫ 𝑐𝑖 the variation in �̄� is
much small smaller than one and the potential variations are small compared to the
thermal potential R𝑇

𝐹 ∼ 25 mV. The large conductivity introduced by the supporting
electrolyte ensures the electric field is small, even though the supporting electrolyte
ions do not move. The small electric field makes that migration can be neglected
with respect to diffusion, resulting in Eq. (2.G.106).

2.H Transient diffusion: Sand’s solution
The one-dimensional diffusion equation (2.3) in the absence of flow, 𝒖 = 0, and
sources 𝑆 = 0 reads

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2 . (2.H.107)

The analytical solution with boundary condition (2.54) and 𝑐(𝑥 →∞) = 𝑐eq reads

𝑐(𝑥, 𝑡) = 𝑐eq − 𝑐′0
{
Δ𝑥√
𝜋

e−( 𝑥Δ𝑥 )
2
− 𝑥

[
1 − erf

(
Δ𝑥

𝑥

)]}
, (2.H.108)

where Δ𝑥 = 2
√
𝐷𝑡. For 𝑥 → 0 this gives

𝑐0 = 𝑐eq −
𝑐′0Δ𝑥√

𝜋
. (2.H.109)



Chapter 3

Porous electrodes

Using porous electrodes, the area available for redox reactions can be increased by many orders
of magnitude, strongly reducing the activation overpotentials. However, a porous electrode
that is too thick will reduce the “electrode effectiveness factor”. This concept will be very
useful in the description of electrolysers, fuel cells and batteries in the subsequent chapters.

3.1 Porous structure
Porous electrodes are characterised by a large number of voids or pores inside the
electrode volume. As a result, the total internal surface area can be much higher
than its external surface area. Electrolyte ions, reactants, and products can diffuse or
sometimes flow through the pores of the electrode. Figure 3.1 illustrates flow stream-
lines through a polydisperse spherical arrangement. Electrons can flow through the
matrix, or the solid part, of the material.

When the porous material is not sufficiently reactive, a thin layer of small (nano-
)particles can be used as a coating to create a large number of active sites. In this case,
the porous material is just a support or substrate for the catalyst and additionally
provides conductivity for electrons. Sometimes, binder materials or solid polymer
electrolytes are also added to provide ionic conductivity.

3.1.1 Porosity
Most porous electrodes do not have a regular repeating structure, but their pore
geometry is stochastic. Instead, these media are characterised by spatially averaged
properties like porosity and tortuosity. The porosity can be defined by either volume
fraction or area fraction:

𝜖 =
Vpore

V
=
𝐴pore

𝐴
, (3.1)
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Figure 3.1: A visualisation of the flow streamlines or ion trajectories inside a porous medium
consisting of a polydisperse arrangement of spheres. Image made using the COMSOL Mul-
tiphysics® software, provided courtesy of COMSOL.

Vpore is the void volume and 𝐴pore is the average void area of the cross-section. In
general, the volume and area ratios in Eq. (3.1) may be different and vary in space.
However, these two definitions can be shown to give the same result for the random
isotropic materials considered here.

3.1.2 Tortuosity
The English word tortuous is the antonym of straight: full of bends and twists. For a
porous medium, we may define the tortuosity loosely as

𝜏 =
𝑙| |
𝑙
. (3.2)

In Figure 3.1, the streamlines travel a longer distance, 𝑙| | , than the shortest path 𝑙,
which is a straight line. By construction, the tortuosity 𝜏 is always equal to or larger
than one. Since not all particles will traverse the same distance 𝑙∥ , this definition is
mathematically not very rigorous. However, this should not bother us here. A high
tortuosity is usually not desired because longer path lengths increase resistance and
pressure drops and decrease diffusion rates.

3.1.3 Volumetric surface area
The volumetric surface area1 is the combined total external surface area 𝐴s per unit of
total volume V

1The quantity 𝑎 is often referred to as specific surface areaspecific surface area, although this term should,
strictly speaking, perhaps be reserved for the amount of surface area per unit mass.
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Figure 3.2: A doubly porous medium with pores in between spherical particles which are
themselves also porous.

𝑎 ≡ 𝐴s
V
. (3.3)

Often, porous electrodes consist of a collection of solid particles2 If these particles
are all of similar size, we can write

𝑎 = (1 − 𝜖) 𝑎s , (3.4)

where 𝑎s ≡ 𝐴s/Vs is the volumetric surface area of a single particle: the ratio of its
area 𝐴s and volume Vs. The subscript ’s’ here stands for surface, but for electrodes
consisting of solid particles, it also stands for solid. For spherical particles of diameter
𝑑

𝑎 =
6 (1 − 𝜖)

d . (3.5)

An inverse relationship between particle size and volumetric surface area gen-
erally holds for any shape. Rescaling all particles making up a porous electrode to
half their geometrical size doubles the surface area without requiring any additional
material. This is particularly important when the catalyst is very precious, for ex-
ample, platinum or iridium. It explains why in fuel cells, for example, preferably Pt
nanoparticles are used. These provide maximum surface area per unit weight.3
Note that in case the particles making up the porous medium themselves are also
porous, as illustrated in Figure 3.2, Eq. (3.4) may still be used. In this case, 𝑎s should
include both internal and external particle surface area.

3.1.4 Superficial, interstitial, and local velocity
When a fluid flows through a porous medium, we can define its velocity in several
ways. In this section, we will only consider velocity magnitudes, but in general, these

2Particles can be coalesced using heating or sintered so that they form a solid electrode. In pocket
electrodes, fine particles are kept within a metallic perforated metal sock. With 𝐴𝑖 and V𝑖 the surface area
and volume of the individual particles,

∑
𝑖 V𝑖 gives the total particle volume and, since 1− 𝜖 is the fraction

of particles, 𝑉 =
∑
𝑖 V𝑖/(1 − 𝜖). With 𝐴s =

∑
𝑖 𝐴𝑖 , Eq. (3.3) gives 𝑎 = (1 − 𝜖)

∑
𝑖 𝐴𝑖∑
𝑖 V𝑖

.
3Below several nanometres, more subtle molecular quantum effects start to play a role, and fabricating

even smaller particles is not necessarily worthwhile.
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𝑙| |

𝑙

𝑢pore

𝑢 = 𝑢pore/𝜏

𝑈 = 𝜖𝑢

Figure 3.3: An idealisation of a porous medium as a bundle of capillaries of which one is
shown. The superficial velocity𝑈 that enters moves faster inside the pores where there is less
space to give an interstitial velocity 𝑢 = 𝑈/𝜖. Because only part of the velocity is in the main
flow direction, the average pore velocity 𝑢pore = 𝑢𝜏 is even faster. The peak velocities inside
the pore can still be faster. Here the porosity and tortuosity 𝜖 = Vpore/V and 𝜏 = 𝑙| |/𝑙.

will be vectors which have a direction.

Pore velocity

The first, perhaps most obvious, velocity we can define is by looking inside a pore and
measuring the velocity. This varies locally in magnitude and direction; for example,
it becomes zero at the solid surface due to the no-slip condition. Therefore, we will
average the velocity over the pore’s cross-section to obtain the velocity magnitude,
𝑢pore. An idealisation that is often made especially for hydraulic calculations is
replacing the porous medium with a bundle of capillaries. Fig. 3.3 illustrates one
such a capillary. This approach has many conceptual difficulties, but the didactic
benefits arguably outweigh them. In this picture, the average pore velocity is an
average over a single pore, which should then be representative of the entire porous
medium.

Interstitial velocity

Because usually, the streamlines are not straight, there will be an average flow di-
rection and magnitude that we will refer to as the interstitial velocity 𝑢. This is the
volume-averaged velocity in the main flow direction. Volume-averaging the flow ve-
locity magnitude gives the pore velocity, but averaging the velocity vectors and then
taking the magnitude gives the interstitial velocity. In the latter procedure, any
component not in the main flow direction averages out to zero.

The difference between pore velocity and interstitial velocity relates to the tortu-
osity. Consider Fig. 3.3 again. A fluid parcel moving with the average pore velocity
𝑢pore takes a time 𝑙| |/𝑢pore to move from the entrance to the exit of the indicated
region. With 𝑢 as the average velocity in the main flow direction and 𝑙 as the shortest
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distance of the pore in this direction, this residence time can be equally written as
𝑙/𝑢. Therefore, with the tortuosity 𝜏 = 𝑙| |/𝑙 of Eq. (3.2), we obtain

𝑢 =
𝑢pore

𝜏
. (3.6)

The interstitial velocity is thus lower compared to the pore velocity by a factor given
by the tortuosity.

Superficial velocity

A third velocity, the superficial velocity𝑈 can be defined as the fluid’s velocity in the
absence of the solid, assuming an equal volumetric flow rate. Alternatively, it is the
bulk velocity of the fluid before entering the porous medium or after leaving it, when
the total cross-sectional stays constant, see Fig. 3.3. Since the solid takes up part of
the flow area, the interstitial flow velocity 𝑢 inside the porous medium will be higher.
Assuming incompressible flow, the flow rate 𝐴𝑈 equals 𝐴pore𝑢. Using Eq. (3.1), we
find

𝑈 = 𝜖𝑢 = 𝜖
𝑢pore

𝜏
(3.7)

The superficial velocity 𝑈 is lower than the average interstitial velocity 𝑢 due to
the reduced volume fraction 𝜖 available for the flow. In turn, the interstitial velocity
is lower than the average pore velocity 𝑢pore because it does not include all the
deviations from the main flow direction introduced by the tortuosity.

3.1.5 Effective diffusivity in porous materials
When modelling the transport of species through a porous medium, computationally,
we may resolve its full concentration in space and time. A two-dimensional example
for a neutral species is depicted in Figure 3.1. Without a flow and no source, 𝑆,
Eq. (2.3) becomes

𝜕𝑐

𝜕𝑡
= 𝐷m∇2𝑐. (3.8)

Here we added a subscript m for the molecular diffusivity 𝐷m in an electrolyte, to
distinguish it from the effective diffusion coefficient 𝐷 that we will introduce in a
moment.4 The local flux inside a pore 𝑵pore = −𝐷m∇𝑐. However, often, we are not
interested in the detailed concentration profile but rather in the average concentration
and superficial flux in the direction of transport. Therefore, we average the partial
differential equation (3.8) over all directions except the transport 𝑥-direction, to give
an ordinary differential equation

4Most texts use a subscript “eff” to denote an effective diffusion coefficient 𝐷eff. To keep the notation
to a minimum, and since 𝐷m is a special case of 𝐷 without a porous medium, we only highlight the
difference when otherwise confusion could arise.
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𝜕𝜖𝑐

𝜕𝑡
= 𝐷

d2𝑐

d𝑥2 . (3.9)

We use the same symbol 𝑐 in both equations but do realise that, while in Eq. (3.8)
𝑐 depends on 𝑥, 𝑦, and 𝑧, in Eq. (3.9) it is averaged over 𝑦 and 𝑧 to become a function
only of 𝑥. In Eq. (3.9), 𝐷 is an effective diffusion coefficient that will be proportional
to the molecular diffusivity 𝐷m but will also depend on the structure of the porous
electrode in a manner we will now investigate.

Consider a concentration differenceΔ𝑐 between two locations in Fig. 3.1 a distance
𝑙 apart in the 𝑥-direction, amounting to a longer distance 𝑙∥ inside the pores. Similar
to Eq. (3.7) we can write the superficial molar flux 𝑁 = 𝐷Δ𝑐/𝑙 as

𝑁 = 𝜖
𝑁pore

𝜏
. (3.10)

Since 𝑁 = 𝐷Δ𝑐/𝑙 and 𝑁pore = 𝐷mΔ𝑐/𝑙∥ we find

𝐷 =
𝜖

𝜏2𝐷m. (3.11)

Compared to Eq. (3.7) there is an additional factor 𝜏, which has been missed by several
authors before [11]. It derives from the factor that the local concentration gradients
are inversely proportional to 𝑙∥ instead of 𝑙, giving an additional factor 𝜏 = 𝑙∥/𝑙.5

The exact same effects of porosity and tortuosity also play a role for conduction of
ions through a porous medium.6 The local version of Ohm’s law reads 𝑖pore = 𝜅m𝐸pore
in terms of the molecular electrolyte conductivity 𝜅m and local electric field 𝐸pore.
This becomes in terms of the superficial current density 𝑖 = 𝜅m𝐸 in terms of an
effective conductivity 𝜅 and global electric field 𝐸. Therefore, analogous to Eq. (3.11)
we will write for the effective conductivity

𝜅 =
𝜖

𝜏2𝜅m. (3.12)

3.1.6 Bruggeman approximation
In the case of a random configuration of particles of various sizes, you can perhaps
imagine that the lower the porosity 𝜖, the higher the tortuosity 𝜏 = 𝑙∥/𝑙 will be.
Transport is unimpeded for very high porosity and can proceed along straight paths

5Here, the squared tortuosity 𝜏2 is sometimes referred to as the tortuosity factor but is often erroneously
referred to as the tortuosity and is even sometimes given the symbol 𝜏. The combination 𝜏2/𝜖 > 1 is called
the Macmullin number and is often used to characterise porous media. Note that the reasoning used to
derive Eq. (3.11) only assumes a flux proportional to the gradient of a concentration. Therefore, it will
equally hold for the transport of heat (Fourier’s law), current (Ohm’s law) or pressure-driven viscous flow
(Darcy’s law).

6And laminar pressure-driven flow, something we will consider in section 5.3.3.
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Figure 3.4: The solution of the transient diffusion equation (3.8) in an artificial two-
dimensional porous structure 0.1 seconds after a concentration of 3 M is set at the left
boundary in a domain with initially zero concentration [9]. The graph on the right shows
the evolution of the concentration at the right boundary and compares this with the 1D nu-
merical solution to 𝜕𝜖𝑐

𝜕𝑡 = 𝐷m𝜖1+B d2𝑐
d𝑥2 [22]. The images were made using the COMSOL

Multiphysics® software and are provided courtesy of COMSOL and Dr. Gregory L. Plett.
See his open-access course ECE5710, Modeling, Simulation, and Identification of Battery
Dynamics, lecture 11.

with negligible tortuosity. For a very low porosity, the space is filled with particles,
and even the space between particles is filled with smaller particles. In this case,
the relative transport path lengths 𝑙∥/𝑙 becomes very large. It can be derived, see for
example Ref. [28], that for a random polydisperse packing of spheres in 3D (B = 1/2)
or normal to a bundle of parallel cylinders in 2D (B = 1)

𝜏2 ≈ 𝜖−B . (3.13)

This formula implies a relationship between porosity and tortuosity: the lower the
porosity, the higher the tortuosity, in accordance with intuition. Inserting this ap-
proximation into Eq. (3.11) gives

𝐷 ≈ 𝜖1+B𝐷m. (3.14)

where 𝐷 is the effective medium diffusion coefficient and 𝐷m is the molecular diffu-
sivity. WithB = 1/2 this gives𝐷 ≈ 𝜖1.5𝐷m, which is often a reasonable approximation
for various random porous media, usually referred to as the Bruggeman approxima-
tion or correlation7

7As pointed out in Ref. [28] these simple special cases do not appear in the original German work of
Bruggeman from 1935. See, for example, Ref. [30] for application to batteries.

http://mocha-java.uccs.edu/ECE5710/index.html
http://mocha-java.uccs.edu/ECE5710/index.html
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Figure 3.5: Illustration of the averaging procedure of a porous electrode’s ionic and electronic
potentials. The electronic potential Φ is relatively flat due to a high metal conductivity, while
the electrolyte potential varies more significantly due to ohmic resistance. The inter-electrode
gap or membrane is at 𝑥 = 0.

3.2 Macro-homogeneous porous electrode approach

3.2.1 Macro-homogeneous approach
A porous electrode, by definition, contains more than one phase.8 The macro-
homogeneous approach that we will outline here consists of treating some of these
phases as intertwined continua—for example, a solid electrode and liquid electrolyte
transport electrons and ions throughout the electrode. Even though, in reality, at each
location, there will be either solid or liquid present, by mathematically averaging over
space, these two phases will co-exist at the same location in the macro-homogeneous
approach.
This averaging procedure is schematically depicted in Figure 3.5. On the left, at each
location, there is either a solid with a potential Φ or a liquid with a potential 𝜙. On
the right, these potentials have been averaged over the 𝑦- and 𝑧-directions to give
potentials Φ(𝑥) and 𝜙(𝑥) that co-exist for each 𝑥. The potential difference Φ − 𝜙
represents the jump in the potential that exists over the electric double layer in the
electrolyte close to the solid.9

3.2.2 General porous electrode equations
The volume-average conservation law for a species in the pores of a porous electrode
reads per total unit volume:

8For example, in a flooded electrode, there are two phases, a solid and a liquid phase. When one of the
reactants or products is gaseous, as is often the case in fuel cells or electrolysers, there is an additional gas
phase. In a polymer electrolyte fuel cell, there may even be an additional solid phase to transport the ions.

9Relative to its equilibrium value 𝜂 = Φ−𝜙−
(
Φ − 𝜙

)
eq is the local activation overpotential. Compared

to Eq. (1.26), we allowed here for an electrode potential Φ that varies in space. In case the electrode has
a non-negligible resistance, the solid phase potential Φ may vary, and a constant electrode potential 𝐸, as
assumed in chapter 1, does not suffice.
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𝑵

𝑵⊥

Figure 3.6: The averaging domain used in Eq. (3.17), showing how the local surface fluxes
𝑁⊥ add up to a superficial flux 𝑵 .

𝜕𝜖𝑐

𝜕𝑡
= −∇ · 𝑵 + 𝑎𝑁⊥. (3.15)

Compared to the general conservation equation Eq. (2.1) the concentration 𝑐
[mol/m3

pore], which is on a per unit fluid basis, is multiplied with the porosity to
give 𝜖𝑐 [mol/m3

tot], the number of moles per total unit volume, including both the
pores and the solid. The Nernst-Planck equation Eq. (3.16) for the superficial flux 𝑁
[mol s−1m−2

tot] becomes

𝑵 = 𝑼c − 𝐷
(
∇𝑐 + 𝑧𝑐∇�̄�

)
. (3.16)

Here 𝑼 is the superficial velocity of Eq. (3.7) and 𝐷 is the effective diffusivity, given
by Eq. (3.11).

The source term 𝑎𝑁⊥ in Eq. (3.15) derives from the general local conservation
considering Eq. (2.1) in steady-state 𝑆 = ∇ · 𝑵pore and volume-averaging so that

1
V

∫
∇ · 𝑵poredV =

∫
𝑵⊥,pore ·

d𝑨⊥,pore

𝑉
= 𝑎𝑁⊥ , (3.17)

where in the second step we used the divergence theorem to relate a divergence in the
local pore flux 𝑵pore to a local surface flux 𝑵⊥,pore through the solid-fluid interface.

The averaged local surface flux 𝑁⊥ is related to the local current density by
Faraday’s law as

𝑁⊥ = ± 𝑗⊥
𝑛𝐹

. (3.18)

As discussed in section 1.4.1, the number of transferred electrons 𝑛 > 0 and
normal fluxes 𝑁⊥ and 𝑗⊥ is positive when entering from the solid into the fluid.
Therefore, depending on whether our species is a reaction product (𝑁⊥ > 0) or a
reactant (𝑁⊥ < 0) and we are considering an anode (𝑗⊥ > 0) or a cathode (𝑗⊥ < 0),
there is a plus or minus sign in Eq. (3.18).

The charge conservation equation (2.9), after volume-averaging similar to in
Eqs. (3.15) and (3.17), reads

0 = −∇ · 𝒊 + 𝑎 𝑗⊥. (3.19)
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Now, 𝒊 is a superficial current density per total unit area, even though the ionic
current density is confined to the pores. Similarly, we can write a volume-averaged
conservation equation for the superficial electronic current density 𝒋

0 = −∇ · 𝒋 − 𝑎 𝑗⊥. (3.20)

Here, the negative sign in the final term arises because we defined 𝑗⊥ to be positive
when charge enters from the solid into the fluid, which is then a sink for electronic
charge.

Adding Eqs. (3.20) and (3.19) gives

∇ · (𝒊 + 𝒋) = 0. (3.21)

The sum of ionic and electronic current densities adds up to a constant current density
𝒊 + 𝒋. By charge conservation, any reduction in ionic current density thus has to lead
to an increase in electronic current density, and vice versa.

3.2.3 Ohm’s law in porous electrodes
Ohm’s law often holds to a reasonable degree of accuracy. This holds, for example,
in metal electrodes, in solid electrolytes, for binary electrolytes at current densities
well below the limiting current density, see section 2.4.3, and in the presence of a
supporting electrolyte, see section 2.5. Therefore, to simplify the analysis we will
assume Ohm’s law to hold and write

𝒊 = −𝜅∇𝜙,
𝒋 = −𝜎∇Φ,

∇ · 𝒊 = −∇ · 𝒋 = 𝑎 𝑗⊥.

(3.22)
(3.23)
(3.24)

where the final equations are Eq. (3.19) and Eq. (3.20). Here 𝜅 and 𝜎 are effective ionic
and electronic conductivities, respectively, see Eq. (3.12). In the case of a particulate
electrode, we may assume the Bruggeman relation (3.11) to hold and write

𝜅 = 𝜅m𝜖1.5 , (3.25)

𝜎 = 𝜎m (1 − 𝜖)1.5 (3.26)

where 𝜅m and 𝜎m are the material conductivities. The electrode volume fraction is
one minus the electrolyte volume fraction so 1 − 𝜖 is used in Eq. (3.26).

To further simplify, we will neglect advection and also the final migration term in
Eq. (3.16) and write 𝑵 = −𝐷∇𝑐. In the absence of flow, this would, of course, hold for
neutral species, but also for a minority species in a supporting electrolyte. In the case
of a binary electrolyte, 𝐷 is replaced by the effective medium ambipolar diffusivity
𝐷a.

With these assumptions Eq. (3.15) can, with Eqs. (3.18) and (3.24), be written as
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Figure 3.7: A schematic of a porous anode where electrons and reactants enter from opposite
sides so ionic current 𝒊 is converted into electronic current 𝒋 as the reactant flux −𝐷∇𝑐
decreases. The boundary conditions for ionic potential 𝜙, electronic potential Φ and reactant
concentration 𝑐 are indicated.

𝜕𝜖𝑐

𝜕𝑡
= ∇ · (𝐷∇𝑐) − ∇ · 𝒊

𝑛𝐹
. (3.27)

Here the minus sign in the final term describes a reactant in an anode, for which
𝑁⊥ < 0 and ∇ · 𝒊 = −𝑎 𝑗⊥ > 0.10

As a boundary condition at a surface that allows no ions to pass through, Eq. (3.22)
gives ∇𝜙 = 0. Similarly, when no electronic current can enter Eq. (3.23) gives ∇Φ = 0.
Finally, we have as a boundary condition ∇𝑐 = 0 in case no molecules of the species
under consideration can pass. These boundary conditions are illustrated in Fig. 3.7.

3.3 Simplified 1D porous electrode equations
We will further simplify the equations of the previous section, assuming:

• a reactant with a volume-averaged concentration 𝑐(𝑥) that varies only in a single
spatial direction (𝑥) inside an anode10

• an infinitely high electronic conductivity 𝜎 so that the electronic potentialΦ = 𝐸
is constant throughout.

• steady-state

• constant 𝐷
10Alternatively, it equally holds for a product in a cathode for which 𝑁⊥ > 0 and ∇ · 𝒊 = 𝑎 𝑗⊥ < 0. For a

reactant in a cathode or a product in an anode, the minus sign before the final term in Eqs. (3.27) and (3.30)
has to be replaced with a plus sign.
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These assumptions simplify the above Eqs. (3.22)- (3.24) and (3.27) to

𝑖 = − 𝜅𝜙′, (3.28)
𝑖′ =𝑎 𝑗⊥, (3.29)

0 =𝐷c′′ − 𝑖′

𝑛𝐹
. (3.30)

where 𝑖 = 𝑖𝑥 is the 𝑥-component of the ionic current density. We use a prime to
denote a derivative with respect to the 𝑥-coordinate so, for example, 𝑖′ = d𝑖/d𝑥.

As shown in Figure 3.8, the 𝑥-coordinate inside a porous electrode is chosen to
run from the inside of the cell outwards, from the gap or separator to the current
collector assumed to be at 𝑥 = 𝐿. For the anode on the left of Figure 3.8 that is
from right to left. so the ionic current density from left to right gives 𝑖 < 0. For the
cathode, the 𝑥-coordinate would run from left to right. We take the current collector
at 𝑥 = 𝐿 to be impenetrable for both ions and reactants. The boundary conditions
can, therefore, be written as

𝑖 = −𝑗
(
at the separator, 𝑥= 0

)
, (3.31)

𝑖 = 0 (at the current collector, 𝑥 = 𝐿) . (3.32)

Finally, the boundary condition for concentration gives11

𝑐′(𝑥 = 𝐿) = 0. (3.33)

With these boundary conditions, we can integrate Eq. (3.30) over the spatial
coordinate 𝑥 to give

0 = 𝐷𝑐′ − 𝑖

𝑛𝐹
. (3.34)

3.3.1 The area multiplier 𝑎𝐿
The derivative 𝑖′ = d𝑖/d𝑥 is a measure of the local reaction rate since it describes
how much ionic current is generated per meter. If it is a constant, we can integrate
Eq. (3.29) to give the total current as 𝑗 = 𝑎𝐿𝑗⊥. Here

𝑎𝐿 =
𝐴s
V

V
𝐴

=
𝐴s
𝐴
, (3.35)

11When a neutral reactant is supplied by flow channels engraved into the current collector (flow field)
from 𝑥 = 𝐿 and a membrane avoids these reactants to be transported beyond 𝑥 = 0, Eq. (3.33) may be
replaced 𝑐′ (𝑥 = 0) = 0. When 𝑐 describes the concentration of an ionic species supplied or removed
through the separator or gap, the boundary condition 𝑐′(𝑥 = 𝐿) = 0 will, in case there is also a flow field,
only hold exactly where there are no flow channels (land area). In the present 1D approximation, however,
it will be a reasonable assumption to apply as an averaged condition.
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Figure 3.8: The ionic and electronic potentials 𝜙 and Φ throughout a cell consisting of, from
left to right, a porous anode where electronic current 𝒋 is converted to ionic current 𝒊, a gap or
separator, and a cathode where the re-conversion to electronic current takes place. When the
electronic conductivity 𝜎 is much larger than the ionic conductivity 𝜅, the electronic potential
drops are much smaller than the ionic potential drop; adding the vertical arrows on the left
shows that 𝐸cell = 𝐸c − 𝐸a ≈ 𝐸eq,c − 𝐸eq,a − (𝜂a0 − 𝜂c0 + ∆𝜙).

is the total electrode surface area 𝐴s as a fraction of the cross-sectional electrode
surface area 𝐴. It thus describes how much area is inside a porous electrode relative
to its outside frontal area. The area multiplier 𝑗

𝑗⊥
= 𝑎𝐿 can be very large12, and

the current 𝑗 entering or leaving the electrode can be several orders of magnitude
larger than the ionic current 𝑗⊥ locally entering or leaving the particles (or fibres)
making up the porous medium. The much lower local current density 𝑗⊥ gives rise
to much-reduced activation overpotentials, which is the primary reason why porous
electrodes are used.

3.3.2 Activation overpotential
For a reaction that is first order in the concentration 𝑐, the concentration-dependent
Tafel equation (1.28) can be written as13

𝑗⊥ = 𝑗∗
𝑐

𝑐eq
e𝜂/𝑏 . (3.36)

12Non-smooth electrode surfaces can have several times more actual reaction area than geometrical area.
A similar multiplier is in this case sometimes referred to as the roughness factor.

13For a cathode we would write 𝑗⊥ = −𝑗∗ 𝑐
𝑐eq e−𝜂/𝑏 .
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Replacing𝐸with the local valueΦ the definition of activation overpotential, Eq. (1.26),
reads

𝜂 = Φ − 𝜙 −
(
𝐸eq − 𝜙eq

)
(3.37)

visualized in Figure 3.8. Since we assume an large electronic conductivity 𝜎 so that
Φ′ ≈ 0, we obtain 𝜂′ ≈ −𝜙′. Inserting Ohm’s law, Eq. (3.28), gives

𝜂′ =
𝑖

𝜅
(3.38)

As illustrated in Figure 3.8 the 𝑥-coordinate runs from left to right in a cathode,
but from right to left in the anode. Therefore, this coordinate always starts at the
electrode ’front’, as seen from the gap or membrane, or ‘entrance’ for reactants.

The overpotential 𝜂 is largest at 𝑥 = 0 where the ionic current enters or leaves.
Deeper into the electrode the overpotential decreases due to ohmic losses, leading to
lower local current density. Mathematically, in the anode 𝑖 < 0 and 𝜂 > 0 so Eq. (3.38)
gives 𝜂′ < 0 and the overpotential decreases away from 𝑥 = 0. In the cathode 𝑖 > 0
and 𝜂 < 0 so Eq. (3.38) gives 𝜂′ > 0 and the overpotential becomes less negative
the further away from 𝑥 = 0. In either case, the driving force for the reaction, the
magnitude of the activation overpotential, is highest where the ions enter and leave
the electrode. Since in the Tafel regime the reaction rate is proportional to e|𝜂|/𝑏 , the
highest reactivity is at the electrode entrance at 𝑥 = 0. If the current is high and the
ionic conductivity is low, it may be that there is very little reactivity near 𝑥 = 𝐿.

When we neglect electronic resistance, the voltage losses in the simple cell of
Figure 3.8 consists of an ohmic drop over the space between the electrodes and an
anodic and cathodic activation overpotential, so

𝑉cell ≡ 𝐸c − 𝐸a = 𝑉eq − (𝜂a0 − 𝜂c0 + ∆𝜙). (3.39)

where the activation overpotentials 𝜂0 = 𝜂(𝑥 = 0) and are evaluated at the front of
the electrode at 𝑥 = 0. This is the main difference with Eq. (1.35), derived previously,
in which a planar electrode with a single overpotential was assumed.

From Eq. (3.39) it seems that the potential drops over the electrolyte inside the
porous electrodes do not play a role. They do however play an implicit role14 in
determining the activation overpotential 𝜂0 as we will show below. As a result of
high electrolyte resistivity, the overpotential can strongly decrease away from 𝑥 = 0,
leading to a narrow reaction zone near 𝑥 = 0. This decreases the available reaction
area and thereby increases 𝜂0. Due to this implicit influence of ohmic losses, 𝜂0 cannot
be seen purely as an activation overpotential. Activation losses and ohmic losses are
intrinsically coupled and cannot always be clearly separated. This is because ions
arriving at 𝑥 = 0 have the choice to either all react directly, or travel a bit further
to where there are fewer ions. The further the ions travel into the electrode, the
more the magnitude of the overpotential decreases due to ohmic losses. The current

14Alternatively we can write𝑉cell = 𝐸c −𝐸a ≈ 𝑉eq − (𝜂a,𝑥=𝐿 − 𝜂c,𝑥=𝐿 +∆𝜙 +Δ𝜙a +Δ𝜙c) so the electrolyte
potential drops Δ𝜙a and Δ𝜙c appear explicitly.
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Figure 3.9: The inhomogeneous ionic current distribution resulting from significant ohmic
(or mass transport) resistance.

distribution resulting from this balance is conveniently described by an effectiveness
factor, which we will now introduce.

3.3.3 Electrode effectiveness factor
Inserting 𝑖′ = 𝑎 𝑗⊥ from Eq. (3.29) into Eq. (3.36) gives, with 𝑐0 = 𝑐(𝑥 = 0)

𝑖′ = 𝑎 𝑗∗
𝑐

𝑐0
e𝜂/𝑏 . (3.40)

Here 𝑎 𝑗∗ [A/m3] is the volumetric exchange current density, which is a measure of
how easily the reaction proceeds.15 The reaction rate 𝑖′ is here expressed in Coulombs
generated or consumed per unit volume and time. Dividing by the number 𝑛𝐹 of
Coulombs per mole of reactant gives the reaction rate in mol/m3/s.

We define an electrode effectiveness factor as the average reaction rate relative to the
maximum reaction rate16, which is at 𝑥 = 0

E =
average reaction rate

maximum reaction rate =

1
𝐿

∫ 𝐿

0 𝑖′d𝑥
𝑖′0

=
−𝑖0
𝐿𝑖′0

=
𝑗

𝑎𝐿𝑗∗e𝜂0/𝑏
, (3.41)

where the current density magnitude 𝑗 = |𝑖0 | in terms of 𝑖0 = 𝑖(𝑥 = 0). Equation (3.41)
gives E𝐿 = −𝑖/𝑖′ |0. As illustrated in Fig. 3.9, the penetration depth E𝐿 gives the position
where the linearized current density profile 𝑖 ≈ 𝑖0+ 𝑖′0𝑥 vanishes. It follows that when
E ≪ 1, the effectiveness factor roughly represents the fraction of the electrode that is
effectively used. Beyond a fraction E of the total electrode thickness, the ionic current
density has become negligible and this electrode area is ineffectively used.

15The combination 𝑖′/𝑛𝐹𝑐 = 𝑎 𝑗∗e𝜂/𝑏/𝑛𝐹𝑐0 [s−1] is a volumetric reaction rate coefficient, similar to 𝑘𝑎s
used in Appendix 3.A.

16Using the boundary condition 𝑖𝐿 = 0 of Eq. (3.32) and using the fundamental theorem of calculus to
integrate a derivative, the average value of 𝑖′ reads 1

𝐿

∫ 𝐿

0 𝑖′d𝑥 = −𝑖0/𝐿. In the anode on the left of Figure 3.8
the ionic current is to the right, or in the negative 𝑥-direction so that 𝑖0 < 0.
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Equation (3.41) immediately allows us to write

𝜂0 = 𝑏ln
(
𝑗

𝐽∗E

)
. (3.42)

Equation (3.42) is very similar to Tafel’s equation 𝜂 = 𝑏ln
(
𝑗

𝑗∗

)
for a planar electrode,

with two important differences.
Firstly, instead of 𝑗∗, what appears is the superficial exchange current density

𝐽∗≡𝑎𝐿𝑗∗. (3.43)
As discussed in section 3.3.1, the multiplier 𝑎𝐿 indicates how much more area is

inside the porous electrode relative to its frontal geometrical area. The quantity 𝐽∗ is
therefore a measure of the total or superficial exchange current density enhanced by
the additional porous electrode surface area.

Secondly, the effectiveness factor E appears, since in general not the entire reactive
area is used effectively. Note that 𝐽∗E = 𝑎𝐿E 𝑗∗, where 𝐿E is the penetration thickness,
so that only that part of the electrode that is effectively used is counted towards the
superficial exchange current density.

Our next goal will be to find out how E depends on the current density 𝑗 and
transport limitations due to a finite ionic conductivity 𝜅 or reactant diffusivity 𝐷.

3.3.4 Summary and characteristic dimensionless numbers.
We will consider an anode. Therefore 𝜂 > 0 and 𝑖 < 0, and Eqs. (3.34), (3.38),
and (3.40) become

𝑐′ = 𝑖/𝑛𝐹𝐷.
𝜂′ = 𝑖/𝜅.

𝑖′ = 𝑎 𝑗∗
𝑐

𝑐0
e𝜂/𝑏 .

(3.44)
(3.45)

(3.46)

Note that 𝑐′, 𝜂′ < 0 and the reactivity 𝑖′ > 0.17 These are three coupled first-order
ordinary differential equations for the concentration 𝑐, overpotential 𝜂, and 𝑖. The
boundary conditions at the current collector at 𝑥 = 𝐿, from Eqs. (3.33) and (3.48),
read

𝑐′(𝑥 = 𝐿) = 0 𝑐(𝑥 = 0) = 𝑐0 , (3.47)
𝑖(𝑥 = 𝐿) = 0 or 𝑖(𝑥 = 0) = −𝑗 , (3.48)

𝜂′(𝑥 = 𝐿) = 0 𝜂′(𝑥 = 0) = −𝑗/𝜅. (3.49)

17For a cathode, where 𝜂 < 0, and 𝑖 > 0, the right-hand side of Eqs. (3.44) and (3.46) acquires a minus
sign and the argument of the exponent in Eq. (3.46) reads −𝜂/𝑏. In this case 𝑐′, 𝑖′ < 0 and 𝜂′ > 0. This is
equivalent to changing the signs of 𝜂 and 𝑖.
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All three of the differential equations (3.44)-(3.46) contain either 𝑖 or 𝑖′. Therefore,
associated with these three equations are three characteristic current densities. The
first one, 𝐽∗, associated with the last equation, Eq. (3.45), we already encountered
in Eq. (3.43). The other two are obtained from the first two equations, Eq. (3.44)
and (3.45), by inserting the characteristic gradients 𝜂′ → −𝑏/𝐿 and 𝑐′ → −𝑐0/𝐿 and
solving for −𝑖 to give

𝐽𝐷 =
𝑛𝐹𝐷𝑐0
𝐿

𝐽𝜅 =
𝑏𝜅
𝐿

𝐽∗ = 𝑎𝐿𝑗∗

(3.50)

(3.51)

(3.52)

Since the reaction rate in Eq. (3.46) is proportional to 𝑖′ ∝ 𝑐e𝜂/𝑏 , the characteristic
gradients 𝜂′ → −𝑏/𝐿 and 𝑐′ → −𝑐0/𝐿 will give a significant effect on 𝑖′. It follows
that if the current density is much smaller (larger) than these characteristic values,
𝐽𝐷 and 𝐽𝜅, the gradients will also be much smaller (larger).

• The characteristic diffusional current density 𝐽𝐷 is the limiting current density
that could be sustained in case the reaction takes place only at 𝑥 = 𝐿.

– If 𝑗 ≪ 𝐽𝐷 , diffusion limitations can be neglected and the concentration 𝑐 is
approximately constant.

• The characteristic ohmic current density 𝐽𝜅 is that which would give an ohmic
drop equal to the Tafel slope 𝑏 over the electrode thickness 𝐿.

– If 𝑗 ≪ 𝐽𝜅, ohmic limitations can be neglected and the overpotential 𝜂 is
approximately spatially constant.

• The superficial exchange current density 𝐽∗ is the effective exchange current
density that the porous electrode would have in case the electrode is used fully
effectively.

– If 𝑗 ≪ 𝐽∗, we can assume linear kinetics, while for 𝑗 ≫ 𝐽∗ the Tafel approx-
imation will be valid.

We note that 𝐽𝜅/𝑗 = 𝑏𝜅/𝑗𝐿 is sometimes referred to as the Wagner number. In the
following section, we will continue with the example of an anode. It is worth noting
that the case of a cathode can be easily obtained by changing the sign of both 𝜂 and 𝑖.

3.4 Transport losses in porous electrodes

3.4.1 No transport limitations, E = 1
We will first consider what happens inside a porous electrode in the absence of
transport limitations. When 𝑗 ≪ 𝐽𝐷 , there are no diffusion limitations and the
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𝑖/𝑖0

𝐿𝑥

1
𝑐/𝑐0

𝜂/𝑏

0
0

Figure 3.10: Dimensionless ionic current density 𝑖/𝑖0, concentration 𝑐/𝑐0 and overpotential
𝜂/𝑏 in the porous electrode for no transport limitation. Note that the Tafel regime requires
𝜂/𝑏 to be well above 1.

concentration 𝑐 ≈ 𝑐0 throughout. When additionally 𝑗 ≪ 𝐽𝜅 there are no ohmic
limitations and the overpotential 𝜂 ≈ 𝜂0 throughout.

Solving Eq. (3.46) with 𝑐 = 𝑐0 and 𝜂 = 𝜂0 and the boundary conditions of
Eqs. (3.47)-(3.49) gives the simple linear profile

𝑖 = 𝐽∗e𝜂0/𝑏
( 𝑥
𝐿
− 1

)
. (3.53)

This situation is illustrated in Figure 3.10. At 𝑥 = 0 we have 𝑖 = −𝑗 so that

𝜂0 = 𝑏ln
(
𝑗

𝐽∗

)
= 𝑏ln

(
𝑗

𝑗∗

)
− 𝑏ln (𝑎𝐿) . (3.54)

This is Tafel’s equation with 𝑗∗ replaced by 𝐽∗ = 𝑎𝐿𝑗∗. The larger effective exchange
current density 𝐽∗ is the result of the porous electrode area being a factor 𝑎𝐿 times
larger than that for a planar surface.

In the Tafel regime, the larger area of a porous electrode lowers the overpotential
by the second term in Eq. (3.54), −𝑏ln (𝑎𝐿) , compared to the overpotential 𝑏ln

(
𝑗

𝑗∗

)
of a non-porous electrode. This is because the local current density, and thereby the
activation overpotential, decreases as the current spreads out over the larger porous
electrode area.

3.4.2 Diffusion limitations
Figure 3.11 shows an example where there are diffusion limitations (𝑗 ≫ 𝐽𝐷) but
no ohmic limitations (𝑗 ≪ 𝐽𝜅). Without ohmic limitations, the overpotential 𝜂 will
be constant. Due to the finite diffusivity, the concentration decreases inside the
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𝑖/𝑖0
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𝜂/𝑏

𝑐/𝑐0

𝑥 L
0

Figure 3.11: The ionic current distribution 𝑖 sharply decreases due to the depletion of reactants
associated with the diffusion limitations that are a consequence of the high current density
𝑗 ≫ 𝐽𝐷 . The ionic conductivity is large so that 𝑗 ≪ 𝐽𝜅 and the overpotential 𝜂 is constant.

porous electrode, causing the reaction rate 𝑖′ to drop proportionally. These conditions
typically arise, for example, in the catalyst layers of fuel cells or CO2-electrolysers,
when they are flooded with water. These catalyst layers are usually thin enough to
avoid significant ohmic drops, but due to the low solubility and diffusivity in water,
the transport of gaseous reactants can be hindered by slow diffusion.

Taking the derivative of Eq. (3.44) and inserting Eq. (3.46), with 𝜂 = 𝜂0 constant,
gives

d2𝑐

d (𝑥/𝐿)2
= M2𝑐, (3.55)

where the Thiele modulus squared reads

M2 =
𝐽∗
𝐽𝐷

e𝜂0/𝑏 =
𝐽∗e𝜂0/𝑏

𝑛𝐹𝐷𝑐0/𝐿
. (3.56)

This dimensionless number represents the ratio between the integral reaction rate
𝐽∗e𝜂0/𝑏 and the characteristic diffusion rate 𝐷𝑐0/𝐿.

The limiting solution in case of high or low M reads

𝑐 = 𝑐0e−M𝑥/𝐿 (M ≫ 1 or M ≪ 1) (3.57)

In case M ≫ 1 or M ≪ 1 this gives 𝑐(𝑥 = 𝐿) ≈ 0 or 𝑐(𝑥 = 𝐿) ≈ 𝑐0, respectively18.
From Eq. (3.46), the reactivity 𝑖′ is proportional to 𝑐 so that the effectiveness factor of

18In these cases the solution satisfies the boundary condition 𝑐′(𝑥 = 𝐿) = 0. For intermediate values we
need to retain also the positive exponent solution eM𝑥/𝐿 and make a linear combination that satisfies the
boundary condition, as is done in the appendix 3.A.3 to derive the full exact solution Eq. (3.A.85).
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Eq. (3.41) reads19

E =
1
𝐿

∫ 1

0

𝑐

𝑐0
d𝑥 ≈

{
1 M ≪ 1
1/M M ≫ 1.

(3.58)

In the latter case of strong diffusion limitations (M≫ 1), with Eqs. (3.41) and (3.56),
this gives20

E =
𝑗

𝐽∗e𝜂0/𝑏
=

1
M =

𝑗/𝐽𝐷
M2 =

𝐽𝐷

𝑗
≪ 1. (3.59)

We thus find that in the presence of strong diffusion limitations the electrode
effectiveness factor is given by the ratio of the characteristic current density 𝐽𝐷 and
the current density 𝑗. The lower the diffusion current density 𝐽𝐷 , or the higher the
current density, the lower the effectiveness factor. This is a simple but very useful
result of the above analysis.

Inserting E = 𝐽𝐷/𝑗 in Eq. (3.42), using Eqs. (3.50) and (3.52), gives

𝜂0 = 𝑏ln
(

𝑗2

𝑎 𝑗∗𝑛𝐹𝐷𝑐0

)
= 2𝑏ln

(
𝑗√

𝑎 𝑗∗𝑛𝐹𝐷𝑐0

)
. (3.60)

In the second equation, we see Tafel’s equation, but with a doubled Tafel slope 2𝑏
and a modified effective exchange current density√

𝐽∗𝐽𝐷 =
√
𝑎 𝑗∗𝑛𝐹𝐷𝑐0. (3.61)

This effective exchange current density is the geometrical mean of the original
𝐽∗ = 𝑎𝐿𝑗∗ and the characteristic diffusion current density 𝐽𝐷 = 𝑛𝐹𝐷𝑐0/𝐿. A doubling
in Tafel slope is bad news, as it means that reaching higher current densities comes at
an increasingly large cell voltage. It arises because the higher the current density, the
smaller the area inside the electrode can be effectively used: the penetration thickness
E𝐿 becomes inversely proportional to 𝑗. Note that the overpotential of Eq. (3.60) is
independent of the electrode thickness 𝐿. This happens because in the considered
case of strong diffusion limitations, the porous electrode is used very ineffectively.
Because in the part beyond the penetration depth virtually no reaction takes place,
the electrode thickness does not matter.

3.4.3 Ohmic limitations
Next, we assume a sufficiently high diffusivity and reactant concentration, so 𝐽𝐷 ≫ 𝑗.
In this case, no diffusion limitations arise and the concentration 𝑐 is approximately

19Evaluating gives
∫ 1

0 e−M𝑥/𝐿𝑑
(
𝑥
𝐿

)
= 1−e−M

M which evaluates to 1/M for M ≫ 1. For M ≪ 1 a series
expansion e−𝑀 ≈ 1 −𝑀 gives that E ≈ 1.

20Using the exact solution E = tanh M
M of Eq. (3.A.87) we see that to find M in terms of 𝑗 requires solving

𝑗/𝐽𝐷 = Mtanh (M) , which is not possible in general analytically.
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Figure 3.12: The ionic current distribution 𝑖 decreasing due to a decrease in activation
overpotential associated with 𝑗 ≫ 𝐽𝜅. The diffusivity is sufficiently large that 𝐽𝐷 ≫ 𝑗 and
concentration profile 𝑐 is approximately flat.

constant. Nonetheless, when 𝑗 ≫ 𝐽𝜅 = 𝑏𝜅/𝐿, a localised reaction zone appears near
𝑥 = 0 due to ohmic limitations. Because the characteristic ohmic potential drop 𝑗𝐿/𝜅
is much larger than the Tafel slope 𝑏 the reaction rate, proportional to e𝜂/𝑏 , is strongly
impacted by ionic resistance. Deeper into the porous electrode, the overpotential 𝜂,
and therefore the reaction rate, strongly decrease.

Combining Eqs. (3.45) and (3.46) with 𝑐 = 𝑐0 gives

e𝜂/𝑏 = 𝜅
𝑎 𝑗∗

𝜂′′. (3.62)

Using the chain rule d
d𝑥 =

d𝜂
d𝑥

d
d𝜂 , so

𝜂′′ = 𝜂′
d𝜂′

d𝜂 =
1
2

d𝜂′2

d𝜂 . (3.63)

Inserting in Eq. (3.62) gives upon integration from 𝜂0 at 𝑥 = 0 to 𝜂𝐿 at 𝑥 = 𝐿

e𝜂𝐿/𝑏 − e𝜂0/𝑏 =
𝜅

2𝑎 𝑗∗𝑏

(
𝜂′2𝐿 − 𝜂

′2
0

)
. (3.64)

Inserting the boundary conditions of Eqs.(3.47)-(3.49) and assuming strong ohmic
limitations 𝑗 ≫ 𝐽𝜅 so that e𝜂0/𝑏 ≫ e𝜂𝐿/𝑏 we obtain e𝜂0/𝑏 = 𝑗2/2𝑎 𝑗∗𝜅𝑏 or

𝜂0 = 2𝑏ln

(
𝑗√

2𝑎 𝑗∗𝜅𝑏

)
. (3.65)

The associated effectiveness factor E ≡ 𝑗/𝐽∗e𝜂0/𝑏 reads
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E =
2𝐽𝜅
𝑗
≪ 1. (3.66)

This simple expression is very similar to the result E = 𝐽𝐷/𝑗 of Eq. (3.59). Anal-
ogously, the ohmic Thiele modulus 𝑀𝜅 = 1/E→0 = 𝑗/2𝐽𝜅 in this case. Again, the
effectiveness factor is given by the ratio of a characteristic current density 2𝐽𝜅 and
the current density 𝑗. The lower 𝐽𝜅, or thheb e higher the current density, the lower
the effectiveness factor. Similar to Eq. (3.60), the overpotential of Eq. (3.65) does not
depend on the electrode thickness 𝐿. Also in the case of strong ohmic limitations, the
reaction is limited to a region near 𝑥 = 0. Beyond a penetration depth E𝐿 the electrode
volume is ineffectively used and does not help to further reduce the overpotential.

3.4.4 Combined ohmic and diffusion limitations - approximation
In the case of simultaneous diffusion and ohmic limitations, we can approximately
add the Thiele moduli and obtain 1

E ≈ M +M𝜅 =
𝑗

𝐽𝐷
+ 𝑗

2𝐽𝜅 ≫ 1.21 In the absence
of transport limitations E ≈ 1 when M +M𝜅 ≪ 1. An approximate expression that
tends to both limits is

E ≈ 1
1 + 𝑗/𝐽𝐷 + 𝑗/2𝐽𝜅

. (3.67)

This result will be accurate in case the combined Thiele modulus M +M𝜅 is either
much smaller or much larger than 1. It can only be expected to give a rough approx-
imation for intermediate values. When M +M𝜅 is large, the effectiveness factor is
small. To make good use of the entire volume of the porous electrode, this regime
should be avoided. Since the Thiele moduli M =

𝑗𝐿

𝑛𝐹𝐷𝑐0
and M𝜅 =

𝑗𝐿

2𝜅𝑏 are both
proportional to the current density and the electrode thickness 𝐿, this implies that
operation at high current density will require relatively thin electrodes. This will be
the case, for example, in fuel cells or advanced electrolysers, where catalyst layers
of sometimes only a few micrometre thick are used. Conversely, operating at low
current densities allows for thicker electrodes. This will be the case, for example, in
some batteries, that can have electrodes of several millimetre thick. These arguments
thus go some way to explain the differences in electrode designs between various
applications.

Having an electrode effectiveness factor value close to 1 sounds ideal, but it means
that a thicker electrode could have been used to increase the reaction area. A very
small effectiveness factor, on the other hand, means that most of the electrode area is
unused and makes ineffective use of materials. Therefore, an optimal electrode effec-
tiveness factor Eopt exists. In terms of this parameter, we find the optimal electrode

21In Appendix 3.C we derive the exact result and show that this simple addition gives a maximum
relative error in the effectiveness factor of 12 %, making it a fairly accurate approximation.
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thickness from Eq. (3.67) as

𝐿opt =
1 − Eopt

Eopt

𝑛𝐹𝐷𝑐0 + 2𝜅𝑏
𝑗

. (3.68)

An often reasonable value [13] is Eopt ≈ 1/3, so that the pre-factor in Eq. (3.68)
becomes 1−Eopt

Eopt
≈ 2.

Inserting Eq. (3.67) in 𝜂0 = 𝑏ln(𝑗/𝐽∗E) gives, when E ≪ 1 :

𝜂0 ≈ 2𝑏ln
©«

𝑗√
𝑎 𝑗∗

1
2𝜅𝑏 +

1
𝑛𝐹𝐷𝑐0

ª®®®®¬
. (3.69)

Compared to Eq. (3.54) the inverse electrode thickness 1/𝐿 is replaced by a sum of
the inverse penetration depths 2𝜅𝑏/𝑗 and 𝑛𝐹𝐷𝑐0/𝑗. The shortest of the penetration
depths thus dominates. This is to be expected, since beyond the shortest of the two
penetration depths the reactivity decreases strongly and the rest of the electrode
helps very little in decreasing the overpotentials.

3.5 Summary
• The effective diffusivity, similar to other transport parameters like conductivity,

can be described by 𝐷 = 𝜖
𝜏2𝐷m (3.11) with tortuosity squared 𝜏2 ≈ 𝜖−B. Factor

B = 1/2 for a porous medium consisting of spheres andB = 1 for long cylinders.

• Per total unit volume, the conservation equation for a reactant 𝜕𝜖𝑐
𝜕𝑡 = ∇ · (𝐷∇𝑐)−

∇·𝒊
𝑛𝐹 (3.27) becomes in 1D, steady-state, and assuming first-order Tafel kinetics:

𝑖′ = 𝑛𝐹𝐷𝑐′′ = 𝑎 𝑗∗
𝑐

𝑐0
e𝜂/𝑏 (3.70)

viz. Eqs. (3.44) and (3.46). For negligble electrode resistance, the overpotential
satisfies 𝜂′ = 𝑖/𝜅 when 𝜎 ≫ 𝜅 (3.45).

• The occurrence of diffusion limitations 𝑗 ≫ 𝐽𝐷 = 𝑛𝐹𝐷𝑐0/𝐿 and/or ohmic
limitations 𝑗 ≫ 𝐽𝜅 = 𝑏𝜅/𝐿 can be described by the electrode effectiveness factor
E ∼ 1

𝐿

∫
𝑖′d𝑥
𝑖′0
≈ 1

1+𝑀 = 1
1+𝑗/𝐽𝐷+𝑗/2𝐽𝜅 . When only the electrode region within

the penetration depth E𝐿 ≪ 𝐿 is effectively used, the activation overpotential

𝜂0 = 𝑏ln
(
𝑗

𝐽∗E

)
= 2𝑏ln

(
𝑗√
𝑎 𝑗∗

√
1

2𝜅𝑏 +
1

𝑛𝐹𝐷𝑐0

)
, (3.42) and (3.69), attains a doubled

Tafel slope.
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Exercise 3.1
As an engineer at an electrode manufacturer, you performed several tests on a new
porous electrode material consisting of sintered spherical particles.
a. You find the effective diffusivity to be one-fourth of the molecular diffusivity.

Give an approximation for the porosity 𝜖.
b. Estimate the diameter of the spherical particles in case you measure the specific

interfacial surface area to be 𝑎=3.6·105 m−1.

Exercise 3.2
In an air-fed PEM fuel cell cathode, oxygen has to diffuse from the flow channel to the
catalyst layer through a diffusion layer of 0.5 mm thick. This layer has an apparent
density of 1260 kg/m3 and is made from a solid material with an intrinsic density of
2100 kg/m3. The bulk diffusivity of oxygen is 𝐷𝑂2= 20 mm2/s and the concentra-
tion at the flow channel interface is 5·10−3 M. Calculate the limiting current density
associated with this diffusion layer.

Exercise 3.3
Consider a cathodic reaction in a porous electrode. Assume concentration-independent
Butler-Volmer kinetics

𝑖
′
=𝑎 𝑗∗

(
e𝛼

𝐹𝜂
R𝑇 −e−(1−𝛼)

𝐹𝜂
R𝑇

)
, (3.71)

and Ohm’s law Φ
′
= − 𝑖/𝜅.

a. Under what conditions can we write 𝑖′≈ 𝜂
𝐴𝑅𝐿?

b. Write an expression for area-specific resistance 𝐴𝑅 in terms of exchange current
density 𝑗∗, volumetric interfacial surface area 𝑎, and thickness of electrode 𝐿.

c. Under the condition derived at a., find the expression for current density 𝑖 using

boundary condition 𝑖 (0)=𝑗 and 𝑖 (𝐿)= 0 in terms of 𝜈 ≡ 𝐿
√

𝑎 𝑗∗𝐹
R𝑇𝜅 .

d. Derive an expression for the linear electrode effectiveness factor Elin ≡ 𝑗/𝐿
−𝑖′ (0) .

Exercise 3.4
The exchange current density and charge transfer coefficient of an electrochemical re-
action at a planar cathode are 𝑗∗c = 0.01 mA/cm2 and 𝛼R = 0.65, respectively. We coat
the cathode with a 1 µm thick, catalytically active layer with a volumetric surface area
of 108 m−1. By approximately how much will the cathode activation overpotential be
reduced? Assume an electrode effectiveness factor E = 1 and 𝑇 = 300 K.

Exercises 3.5-3.25
Fill in the missing steps in the main text, indicated by the symbol .



Appendices *

3.A Pore versus effective medium
There are two distinct ways to model a porous electrode: by using an effective medium
approach as in the main text, or by studying a single pore. There has been somewhat
of a divide in the literature on porous electrodes with, for example, de Levie studying
single pores and Newman using effective medium equations. These approaches can
give equivalent information when tortuosity and porosity are included properly. The
pore perspective may be more intuitive for some, so we work out the simultaneous
diffusion and reaction in a single pore.

Consider the idealised cylindrical pore in Figure 3.13. We will only consider
transport in the axial direction, so the general steady-state conservation law in 1D
reads

0 = −d𝑁
d𝑥 + 𝑆, (3.A.72)

where 𝑁 = −𝐷 d𝑐
d𝑥 . The reaction takes place only at the pore surface, not at the inlet

on the left, nor at the end of the pore on the right. For a first-order reaction in the
concentration 𝑐, with reaction rate constant 𝑘, the surface flux 𝑁⊥ reads

𝑁⊥ = −𝑘𝑐. (3.A.73)

Since we are considering reactants, not products, this radial flux is in the direction
from fluid to solid, hence the negative sign.
In a small axial segment with volume Vs and surface area 𝐴s the surface reaction
subtracts𝑁⊥𝐴s moles of reactant per unit time. This gives a sink 𝑆 = 𝑁⊥𝐴s/Vs = 𝑎s𝑁⊥
per unit volume.22 We can, therefore, write 𝑆 = −𝑘𝑎s𝑐. The volumetric rate constant
𝑘𝑎s allows us to make an effective one-dimensional description of a two-dimensional
pore.

22The volumetric surface area for a cylinder with diameter 𝑑without its two ends is 𝑎s =
𝐴s
Vs

= 𝜋𝑑
𝜋𝑑2/4 = 4

d ,
but we keep it as a general parameter to allow for arbitrary cross-sectional shapes.
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𝑐

𝑥

No reaction

Reaction at pore wall

L

𝑐0

M = 0.1

M = 10

penetration depth

Figure 3.13: Schematic representation of possible concentration profiles for different Thiele
moduli M in a single pore, in which a reaction takes place at the pore wall and reactants diffuse
inwards from 𝑥 = 0.

3.A.1 Effectiveness factor
The reaction at the pore wall will lead to an axial concentration gradient, bringing in
new reactants by diffusion. For higher reaction rates, strong concentration gradients
arise, and most of the pore volume can be deprived of reactants, as diffusion is not
fast enough to meet the demand for reactants in the reaction.
To quantify this, we define the effectiveness factor as follows:

E =
average reaction rate

maximum reaction rate =

1
V

∫
𝑘𝑎s𝑐dV
𝑘𝑎s𝑐0

=
⟨𝑐⟩
𝑐0
, (3.A.74)

where we assumed a reaction rate 𝑆 = −𝑘𝑎s𝑐 with constant 𝑘𝑎s. The notation ⟨𝑐⟩ =
1
V

∫
𝑐𝑑V denotes a volume average. In the one-dimensional approximation we are

after, 𝑐 becomes only a function of 𝑥, and ⟨𝑐⟩ = 1
𝐿

∫ 𝐿

0 𝑐d𝑥. For a first-order reaction, the
effectiveness factor is thus simply the average concentration relative to the entrance
concentration. Next, we set out to find an expression for E as a function of the pore
geometry, diffusion coefficient, and reaction rate.

3.A.2 Thiele modulus
Equation (3.A.72) becomes:

0 = 𝐷
d2𝑐

d𝑥2 − 𝑘𝑎s𝑐. (3.A.75)

To solve this second-order differential equation for the concentration profile, two
boundary conditions are required as follows:
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𝑐 (𝑥 = 0) = 𝑐0 , (3.A.76)
𝑐′ (𝑥 = 𝐿) = 0. (3.A.77)

Introducing the following dimensionless variables

�̄� =
𝑥

𝐿
, 𝑐 =

𝑐

𝑐0
, (3.A.78)

Eqs. (3.A.75), (3.A.76) and (3.A.77) can be written in dimensionless form as

c̄′′ = M2𝑐 (3.A.79)
𝑐 (�̄� = 0) = 1 (3.A.80)
𝑐′ (�̄� = 1) = 0 (3.A.81)

Note that we use prime to denote a derivative with respect to �̄� when considering 𝑐,
but a derivative with respect to 𝑥 when considering 𝑐. The Thiele modulus squared
is defined as:

M2 =
𝑘𝑎s𝐿

2

𝐷
. (3.A.82)

Writing M2 =
𝑘𝑎s𝑐0𝐿
𝐷𝑐0/𝐿 we clearly see that it is a characteristic dimensionless number

representing the ratio between reaction rate and diffusion rate.

3.A.3 Analytical solution
The general solution to Eq. (3.A.79) reads

𝑐 = 𝐴e𝑀�̄� + 𝐵e−𝑀�̄� . (3.A.83)

The boundary conditions, Eq. (3.A.76) and Eq. (3.A.77) give

𝐴 =
e−M

eM + e−M , 𝐵 =
eM

eM + e−M , (3.A.84)

so
𝑐 (�̄�) = eM(1−�̄�) + e−M(1−�̄�)

eM + e−M =
cosh (M (1 − �̄�))

cosh (M) . (3.A.85)

The hyperbolic cosine is defined as cosh (𝑥) = 1
2 (e𝑥 + e−𝑥) .

We can now obtain ⟨𝑐⟩ =
∫ 1

0 𝑐𝑑�̄� by directly averaging Eq. (3.A.85). Instead, we
integrate Eq. (3.A.79) from 𝑥 = 0 to 𝑥 = 𝐿 and divide by 𝐿 to give

−𝑐′0 = M2 ⟨𝑐⟩ , (3.A.86)
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where we used the boundary condition Eq. (3.A.81). This allows the effectiveness
factor to be written as

E = ⟨𝑐⟩ = −
𝑐′0

M2 =
tanh (M)

M . (3.A.87)

The final result can be obtained either by integration or differentiation of Eq. (3.A.85).
Performing a series expansion around M = 0 we have tanh (M) ≈M for small

values M ≲ 0.4 of the Thiele modulus. So when the reaction rate is low compared to
the maximum diffusion rate, inserting this result into Eq. (3.A.87), the effectiveness
factor is close to one:

E ≈ 1 (M ≲ 0.4) . (3.A.88)

In this case, the concentration is approximately constant and equal to the inlet
concentration throughout the pore, and the reaction rate is high throughout. See the
M = 0.1 curve of Figure 3.13 for an illustration.

For roughly M ≳ 4 we have tanh (M) ≈ 1, so that

E ≈ 1
M (M ≳ 4) . (3.A.89)

In this case, the maximum diffusion flux is insufficient to supply material to the
end of the pore. This is illustrated by the curve in Figure 3.13, corresponding to
M = 10. As the reactivity increases, less volume in the pore can be reached by dif-
fusion, resulting in a smaller fraction of the pore length being used, hence a lower
effectiveness factor. The inverse dependence on the Thiele modulus in Eq. (3.A.89)
can be understood as follows. Doubling the reaction rate in this regime doubles the
required diffusive flux at the entrance. This results in a concentration gradient that
is twice as steep so that a near-zero concentration is reached at half the distance from
the pore entrance, resulting in a halving of the effectiveness factor.

To quantify this, we define a penetration depth by linearising the concentration
profile near 𝑥 = 0 and seeing at which pore depth this linearised concentration profile
reaches zero. The result is a distance − 𝑐

𝑐′
��
𝑥=0. In dimensionless notation, dividing by

𝐿, the associated active fraction of the total pore is

− 1
𝑐′0
≈ 1

Mtanh (M)
M≫1−→ 1

M , (3.A.90)

where we used Eq. (3.A.87). So for large M, similar to the effectiveness factor, the
penetration depth also becomes inversely proportional to M. As is illustrated in
Figure 3.13 the reaction rate does not immediately vanish beyond the penetration
depth. It does give a rough idea of the length of the pore over which the reaction rate
is significant.
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3.B Dimensionless porous electrode equations
The governing equations, Eqs. (3.44), (3.45) and (3.46), the boundary conditions,
Eqs. (3.31) and (3.32), and Eq. (3.33) are made dimensionless using the following
definitions:

�̄� =
𝑥

𝐿
, 𝑐 =

𝑐

𝑐0
, �̄� =

|𝜂|
𝑏
, 𝚤 =

𝑖

𝑖0
, 𝚥 =

𝑗𝑥

𝑗𝑥𝐿
. (3.B.91)

The dimensionless coordinate �̄� and concentration 𝑐 we have used already in
section 3.A.3. We will again use a prime to denote a derivative with respect to �̄�,
not 𝑥 as in the case of dimensional quantities. Note that the non-dimensionalization
of the overpotential �̄� deviates from our previous use of the dimensionless potential
�̄� = 𝐹𝜙/R𝑇 since 𝑏 = R𝑇/𝛼𝐹, with 𝛼 the charge transfer coefficient, is used as the
reference potential instead of the thermal potential R𝑇/𝐹.

Finally, 𝑖 and 𝑗𝑥 are the 𝑥-components of the ionic and electronic current density.
We introduced dimensionless ionic and electronic current densities 𝚤 and 𝚥 by dividing
their extremal value 𝑗𝑥𝐿 = 𝑖0, equal in magnitude to the current density of the cell 𝑗.
Charge conservation 𝑖 + 𝑗𝑥 = 𝑗𝑥𝐿 then becomes

𝚤 + 𝚥 = 1. (3.B.92)

Note that, by dividing with a quantity with the same sign, 𝚤 and 𝚥 both vary
between 0 and 1. At the electrode front 𝑥 = 0 there is only ionic current, so 𝚤 = 1 and
𝚥 = 0. At the back of the electrode 𝑥 = 𝐿 all current is converted to electronic current
so that 𝚥 = 1 and 𝚤 = 0. Additionally, at �̄� = 1 reactants cannot leave or enter so that
concentration gradients vanish, resulting in the following boundary conditions:

𝚥 = 0 or 𝚤 = 1 (𝑥 = 0), (3.B.93)
𝚥 = 1 or 𝚤 = 0 and 𝑐′ = 0 (𝑥 = 𝐿). (3.B.94)

In dimensionless notation, Ohm’s law (3.45), the diffusion equation (3.44), and Tafel’s
equation (3.46) become, respectively

�̄�′ = −𝑗𝜅𝚤 (3.B.95)
𝑐′ = −𝑗𝐷 𝚤 (3.B.96)
𝑗∗𝚤
′ = −𝑐e�̄� (3.B.97)

where we introduced the following dimensionless current density magnitudes
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𝑗𝜅 =
𝑗

𝐽𝜅
(3.B.98)

𝑗𝐷 =
𝑗

𝐽𝐷
(3.B.99)

𝑗∗ =
𝑗

𝐽∗
. (3.B.100)

Compared to the dimensional Eqs. (3.44)-(3.46) the right-hand side of each of
these equations has a minus sign and holds not only for the anode but also for the
cathode.

Instead of a dimensionless current density, we can also interpret 𝑗𝜅 as the ratio
between the characteristic ohmic voltage drop 𝑗𝐿/𝜅 and the Tafel slope 𝑏. The inverse
is sometimes referred to as the Wagner number Wa = 1/𝑗𝜅 = 𝜅𝑏/𝑗𝐿. The number 𝑗𝐷
divides the current density 𝑗 with the current 𝐽𝐷 =

𝑛𝐹𝐷𝑐0
𝐿 that could be sustained by

diffusion alone over a distance 𝐿.

The boundary conditions of Eq. (3.B.93) and Eq. (3.B.94), applied to Eq. (3.B.95),
can equivalently be written as

�̄�′0 = −𝑗𝜅 , (3.B.101)
�̄�′1 = 0. (3.B.102)

Here, we again use a subscript 0 or 1 to denote the position 𝑥 = 0 or 1. In the next
few sections, we will consider various cases in which a simple analytical solution to
this set of equations can be found. The goal will be to use these to find the relation
between current density and potential losses.

In dimensionless notation Eq. (3.41) becomes

E =
1
𝚤′0

=
𝑗∗

e�̄�0
, (3.B.103)

so that

�̄�0 = ln
(
𝑗∗
E

)
. (3.B.104)

3.C Combined ohmic and diffusion limitations - exact

We will here define 𝜒 ≡ 𝑗𝜅

𝑗𝐷
=

𝐽𝐷
𝐽𝜅

=
𝑛𝐹𝐷𝑐0
𝑏𝜅 , which is a characteristic ratio of ohmic

and diffusive effects, and is independent of current density. In case 𝜒 ≫ 1, ohmic
limitations are much stronger than diffusive limitations. When 𝜒 ≪ 1, ohmic effects
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can be neglected relative to diffusive effects. This number only says something about
the ratio of the two effects, not their magnitudes, which are given by 𝑗𝜅 and 𝑗𝐷 ,
respectively.
We can combine equations (3.B.95) and (3.B.96) to give 𝜂′ = 𝜒𝑐′. Integrating, using
𝑐0 = 1 gives

𝑐 = 1 +
�̄� − �̄�0

𝜒
. (3.C.105)

Differentiating Eq. (3.B.95) and eliminating 𝚤
′ using Eq. (3.B.97), we get

𝑗∗

𝑗𝜅
�̄�′′ = 𝑐e�̄� . (3.C.106)

Using �̄�′′ = 1
2

d�̄�′2
d�̄� from Eq. (3.63), we can integrate Eq. (3.C.107) over �̄� from �̄�0 to

�̄�1 to give

𝑗∗

2𝑗𝜅

(
�̄�′21 − �̄�

′2
0

)
=

(
1 + �̄�−�̄�0 − 1

𝜒

)
e�̄�

�����̄�1

�̄�0

→
(
−1
𝜒

)
e�̄�1 −

(
1 − 1

𝜒

)
e�̄�0 . (3.C.107)

In the final expression, we assumed that 𝑐1 = 1+ �̄�1−�̄�0
𝜒 ≈ 0. This gives �̄�0 − �̄�1 ≈ 𝜒,

which we use to write the right-hand side of Eq. (3.C.107) as
(
− 1

𝜒e−𝜒 +
(
1 − 1

𝜒

))
e�̄�0 =

𝜒−1−e−𝜒
𝜒 e�̄�0 . Finally, we use the boundary conditions (3.B.101) to write the left-hand

side as 𝑗∗ 𝑗𝜅
2 to give

e�̄�0 =
𝜒 𝑗𝜅 𝑗∗/2

𝜒 − 1 − e−𝜒 ≈

𝑗𝜅 𝑗∗
2 =

𝑗2

2𝑎 𝑗∗𝜅𝑏
(𝜒 ≫ 1)

𝑗𝐷 𝑗∗ =
𝑗2

𝑎 𝑗∗𝑛𝐹𝐷𝑐0
(𝜒 ≪ 1).

(3.C.108)

The final expression in Eq. (3.C.108) is obtained by making a Taylor expansion e−𝜒 ≈
1 − 𝜒 + 𝜒2/2 to second order in 𝜒 ≪ 1. This result was first obtained in Ref. [2].

The physical interpretation of these results is that a proportionally smaller part
of the electrode is used as the current increases. In case of diffusion limitations, the
reactants will be depleted within a fraction of the electrode thickness. In the case
of ohmic limitations, the ionic resistance decreases the overpotential so much that
the reaction rate strongly decreases. The electrode thickness that is effectively used,
therefore, shrinks. Thinner electrodes have a smaller total area and thus a smaller
exchange current density (𝐽∗ = 𝑎𝐿𝑗∗). So when the current density is increased, not
only does the numerator in the logarithm of Eq. (3.54) increase, but the denominator
decreases as well. This gives rise to twice the normal activation losses or a doubled
Tafel slope.
Inserting the polarisation relation of Eq. (3.C.108) we obtain, when E ≪ 1:
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E = 2𝜒 − 1 + e−𝜒

𝜒 𝑗𝜅
≈

{
2/𝑗𝜅 (𝜒 ≫ 1)
1/𝑗𝐷 (𝜒 ≪ 1) .

(3.C.109)

In case 𝜒 ≪ 1, ohmic limitations can be neglected, and only diffusion limitations
are considered. One of the assumptions behind Eq. (3.C.108) was that 𝑐1 ≪ 1, so that
Eq. (3.C.109) is valid only in case of severe diffusion limitations.

The approximation of simply adding Thiele moduli to give 1/E ∼ 𝑗𝐷 + 𝑗𝜅/2, as
done in section 3.4.4, is quite accurate. The relative error in the effectiveness factor
compared to the exact result of Eq. (3.C.109) is only 12 % and occurs when 𝜒 ≈ 2.7.



Chapter 4

Batteries

This chapter introduces several fully analytical battery models. At high charge or discharge
rates, the reaction zone model considers a steep reaction front that slowly moves through the
battery electrode. At low discharge rates, slow diffusion into the solid active material can
allow the use of a single particle model. We briefly consider the general structure of modern
battery models, which contain both the reaction zone and single particle model as its limits.
Finally, we consider a solution to the porous electrode equations for a binary electrolyte.

4.1 Introduction
For short-term storage of electricity, for example in electronics and electric vehicles,
batteries are a popular choice. With the advent of renewable energy, they may also
play a role in mitigating the problem of intermittency of renewable sources, which
requires highly efficient storage of electricity over the scale of hours or shorter.

4.1.1 Types of batteries *
Historically, the word battery refers to a series of at least a few electrochemical cells,
typically put in series to obtain large voltages. While some batteries still contain
several cells, the word presently can also refer to a single electrochemical cell. For
example, common 1.5 V batteries usually consist of a single cell, while a nine-volt
block battery consists of six such batteries in series.

1. Primary batteries: These batteries are for one-time use. They are not recharge-
able. In other words, the electrochemical reactions involved are not reversible.
An example is the ubiquitous AA alkaline battery.

2. Secondary batteries: These are rechargeable and can be used for many cycles.
An example is the lithium-ion battery, commonly used in mobile phones and
laptops.
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Starting from the voltaic pile explored by Alessandro Volta around 1800, continuous
improvements in batteries led to the use of rechargeable Nickel Cadmium alkaline
batteries developed in the 1960s and modern-day Nickel-metal hydride (NiMH) and
lithium-ion batteries in the 1990s. Figure 4.1 shows the energy density of various types
of batteries. Note that batteries typically have an energy density that is at least one to
two orders of magnitude smaller than that of liquid fuels like gasoline (13000 Wh/kg,
9500 Wh/l).

Ni
Cd

Li-ion

Smaller size

Lighter weightPb
acid

0
0 100 200

200

400

Wh/l

Wh/kg

Ni
MH

Figure 4.1: Specific energy density [Wh/kg] as a function of volumetric energy density
[Wh/l]. Along the horizontal axis, a higher energy density indicates lighter batteries; along
the vertical axis, a higher energy density indicates that batteries can be made smaller.

Often, liquid binary electrolytes are used in batteries, including:

• Potassium hydroxide (K+OH−) in alkaline (Zn/MnO2), Ni-Cd, and Ag-Zn bat-
teries

• Sulphuric acid ((H+)2SO2−
4 ) in lead-acid batteries, and

• Lithium hexafluorophosphate (Li+PF6
−) in Li-ion batteries

State-of-the-art lithium-ion batteries use an electrolyte like LiPF6 in an organic
solvent, a LiCoO2 cathode, and a carbon graphite anode with reactions that can be
represented during discharging as, at the anode1

1Note that during discharging, oxidation takes place at the anode and reduction at the cathode, as in
any other electrochemical cell. However, in batteries, the anode and cathode during discharging remain
the anode and cathode during charging. Therefore, only during the charging of batteries can oxidation
take place at the cathode and reduction at the anode.
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Li+

graphite
layer

Figure 4.2: The intercalation of Lithium ions between graphene layers inside an electrode.
The intercalation process is alternated with de-intercalation, in which the Lithium ions move
out again, which gives Li-ion batteries their nickname ‘rocking-chair batteries’.

C6Li𝑥
disch.−−−−−⇀↽−−−−−
charge

𝑥Li+ + C6 + 𝑥e− , (anode) (4.1)

Li1−𝑥CoO2 + 𝑥Li+ + 𝑥e−
disch.−−−−−⇀↽−−−−−
charge

LiCoO2. (cathode) (4.2)

The fractional reaction stoichiometry 𝑥 indicates the number of Lithium ions per
carbon atom that is integrated into the layered graphite structure through a process
called intercalation or insertion, see Fig. 4.2.

In an alkaline battery, the following redox reaction takes place

Zn + 2OH−
disch.−−−−−⇀↽−−−−−
charge

ZnO +H2O + 2e− (anode) (4.3)

2MnO2 + 2H2O(l) + 2e−
disch.−−−−−⇀↽−−−−−
charge

2MnO(OH) + 2OH−. (cathode) (4.4)

4.1.2 Battery terminology
Battery researchers have their own terminology and conventions, sometimes some-
what different from other parts of electrochemistry and electrochemical engineering
fields. Here, we list some of the definitions and terms we will use later on.

1. Cut-off voltage (𝑉d): the voltage below which the battery is considered empty
or discharged; hence the subscript d. Below this voltage, the battery can no
longer be used satisfactorily for the intended application; further discharging
may even damage the battery.
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2. Theoretical capacity (𝑄max): The maximum “charge” the battery can hold. The
battery is electrically neutral, but this indicates the amount of charge that can
be maximally converted through redox reactions. Often units of Ampere-hours
are used (1 Ah = 3600 A s = 3600 C) instead of C, the Coulomb.

3. Volumetric theoretical capacity (𝑞max): Maximum charge per unit volume.
Considering only a single porous electrode volume, we can write 𝑞max =

𝑄max
𝐴𝐿 ,

with 𝐴 the separator area and 𝐿 the electrode thickness.

4. Discharge time (𝑡d): The time required for a full discharge, until the cut-off
voltage is reached.

5. Discharge rate (C/#): A measure of how long it takes to discharge a battery
from its maximum theoretical capacity. This is often expressed as a 𝐶 rate. For
example, a rate of C/3 means the battery is discharged in 3 hours and 3C means
a full discharge in 20 minutes. Using a similar notation, the charging rate is
sometimes expressed as an 𝐸 rate.

6. Current density (𝑗): Rarely used when describing batteries; its average value
can be related to the ‘actual’ battery capacity 𝑄 ≤ 𝑄max and the discharge time
through

𝑗 =
𝑄

𝐴𝑡d
=
𝑞𝐿

𝑡d
=
𝑞max𝐿

3600𝑁 . (4.5)

7. State of charge (SOC): Represents the amount of charge stored, as a fraction of
the theoretical capacity 𝑄max. We will use the symbol SoC, where,

SoC(𝑡) = 1 − 𝐴
∫ 𝑡

0 𝑗𝑑𝑡

𝑄max
= 1 − 1

𝐿

∫ 𝑡

0 𝑗𝑑𝑡

𝑞max
. (4.6)

8. Terminal voltage (𝑉cell): This is the voltage between the positive and negative
terminals of a battery. For a single electrochemical cell or cells in parallel, this
is equal to the cell voltage, so we will use the same notation as before. It is a
multiple of the cell voltage for batteries consisting of several cells in series. The
terminal voltage is not to be confused with the cut-off voltage.

9. Energy density: The maximum available energy per unit volume or unit mass of
the battery. Often units of Wh = 1 W·3600s = 3600 J are used instead of Joules.
Hence, common units for energy density are Wh/l or Wh/kg, for volumetric and
gravimetric energy density (specific energy), respectively.
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Figure 4.3: The typical battery layout considered (top), an electrode separated in distinct
discharged and unreacted parts in the reaction zone model (middle), and the distribution of
ionic current 𝑖𝑥 in an example cathode assuming 𝑗 ≫ 𝐽𝜅. The fraction of reacted material is
equal to the dimensionless position of the reaction zone 𝑥d/𝐿.

4.2 Moving reaction zone model

4.2.1 Assumptions
We consider a porous battery electrode with negligible electrode resistivity but sig-
nificant ohmic limitations in the electrolyte. We assume a constant electrolyte con-
ductivity 𝜅.2 In the terminology of Chapter 3, we consider the case 𝑗 ≫ 𝐽𝜅 = 𝑏𝜅/𝐿
so, by Eq. (3.66), the effectiveness factor E ≪ 1. This implies that the reaction takes
place primarily over a reaction zone with a thickness equal to the penetration depth
E𝐿 ≪ 𝐿. This allows us to split the discharging battery electrode into three zones,
with the thin reaction zone demarcating discharged and not yet discharged zones
as shown in Figure 4.3.3 A moving reaction zone model based on this idealisation was
developed in Ref. [27].

2Commonly in batteries, the metal electrodes allow a high conductivity for electrons. At the same time,
there are large research efforts to develop electrolytes with sufficiently high ionic conductivity. Solid-state
batteries use solid electrolytes, which may approximately satisfy Ohm’s law, as considered here.

3We will in this chapter generally talk about discharging, while the descriptions equally apply to
charging. We will also only consider a single electrode at a time to keep the notation minimal. It will
usually be straightforward to add the second electrode in the same manner.
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Figure 4.4: Distribution of ionic and electronic potential 𝜙 and Φ respectively, with the
voltage drop ∆𝜙 due to ohmic resistance over the discharged region and the strong drop in
activation overpotential in the reaction zone.

4.2.2 The terminal voltage
We will write the cell voltage using Eqs. (3.39) and (1.35) as

𝑉cell = 𝑉eq − Δ𝑉 − Δ𝜙, (4.7)

where4

Δ𝑉 = 𝜂a0 − 𝜂a0 + 𝐴𝑅𝑗. (4.8)

Figure 4.4 shows the distributions of potentials inside a porous battery electrode with
a sharp, moving reaction zone front. There is no reaction over the discharged region
so, by Ohm’s law in the form of Eq. (1.8), the ionic potential drop up to the reaction
zone reads:

Δ𝜙 =
𝑗𝑥d

𝜅d
, (4.9)

where 𝑥d is the thickness of the discharged layer and 𝜅d is the effective ionic conduc-
tivity of the discharged material.5

Figure 4.5 shows the cell voltage as a function of the discharged layer thickness
𝑥d. When 𝑥d approaches the electrode thickness 𝐿 and little reactive material is left,
the activation losses will increase, causing the strong decrease in terminal voltage
depicted in Fig. 4.5. At a cut-off voltage 𝑉d, the battery is considered discharged for
practical purposes. The final state of charge will typically be non-zero because some
capacity remains left, which can be used at a lower current.

4In Eq. (1.35), we reserved Δ𝑉 for just electronic losses in the electrodes, cables, etc. Here, in Δ𝑉 ,
we also include the activation losses and ionic ohmic losses in the membrane. Since we assume 𝑗 ≫ 𝐽𝜅 ,
Eq. (3.65) can be used to give the overpotential at the beginning of the reaction zone. Strictly speaking, this
will cease to hold when the reaction zone comes very close to the right boundary, requiring SoC ≥ 2𝐽𝜅/𝑗.

5Note that since the reaction in a battery involves the solid electrode material, the porosity may change
due to the reaction, changing the ionic conductivity compared to that in the unreacted electrode material.
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𝑉cell = 𝑉eq − Δ𝑉 − 𝑗𝑥d/𝜅d

𝑉d

0 𝐿

𝑥d

Figure 4.5: The terminal voltage 𝑉cell as a function of the position 𝑥d of the reaction zone.
Ideally, the cut-off voltage (𝑉d) is reached when 𝑥d approaches 𝐿 at the end of the porous
electrode. In reality, the activation losses start to increase when 𝑥d approaches 𝐿 resulting in
the terminal voltage dropping below the cut-off voltage.

4.2.3 Optimal battery electrode thickness
Combining Eqs. (4.7) and (4.9) gives the position of the reaction front at the end of
the discharge when the terminal voltage 𝑉cell equals the cut-off voltage 𝑉d

𝑥r = 𝜅d
𝑉eq −𝑉d − Δ𝑉

𝑗
= 𝐿opt. (4.10)

Here𝑉eq−𝑉d is the maximum allowable voltage drop of the battery over its discharge.
Subtracting other losses Δ𝑉 , the numerator 𝑉eq − 𝑉d − Δ𝑉 gives the voltage that
‘remains’ for ohmic losses in the electrolyte of the porous electrode.

Ideally, the final state of charge is small, and the reaction zone has approximately
reached the end of the battery electrode, so little unreacted electrode material re-
mains. Therefore, Eq. (4.10) directly gives the optimal porous electrode thickness
𝐿opt for this current density 𝑗. Similar to what we found in Eq. (3.68), higher current
densities and lower conductivities dictate the use of thinner electrodes.

Often, we want to discharge a battery in a certain given time 𝑡d rather than at a
given current density. In this case using Eq. (4.5), 𝑗 = 𝑞𝐿

𝑡d
, in Eq. (4.10) and neglecting

the current density dependence of Δ𝑉 , gives a quadratic equation for 𝐿 that is solved
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𝐿opt =

√
𝜅d
𝑉eq −𝑉d − Δ𝑉

𝑞
𝑡d. (4.12)

For example, with 𝑡d = 10 h, 𝜅d = 1 S/m, 𝑉eq −𝑉d = 0.1 V, and 𝑞max ≈ 1 kAh/l,
we obtain 𝐿 ≈ 1 mm. The effective conductivity in batteries is usually relatively
low compared to that in fuel cells, electrolysers, and flow batteries. Unlike in these
other applications, the electrodes themselves are the reactants. Therefore, battery
electrodes are relatively thick, which is necessary to achieve a high capacity. Through
Eqs. (4.10) and (4.12), this implies that batteries have relatively low current densities
or long discharge times.

4.3 Single particle models

4.3.1 Solid diffusion
The moving reaction zone model we just considered is expected to be a good approxi-
mation for high discharge rates when ohmic limitations in the electrolyte are limiting.
However, the slow penetration of reactants and products inside solids is often the
limiting process. The model we follow here is inspired by a common approach to
battery modelling discussed in more detail in section 4.3.6. We assume that redox
reactions take place at the battery particle surface after which the products diffuse
towards the bulk of the particle. 7 The diffusion coefficient in gases and liquids are
typically of the order of 10−5 and 10−9 m2/s, respectively, whereas in solids it can be
still many orders of magnitude lower than in liquids. See Tbl. 4.1 for typical diffusion
coefficients in various Lithium compounds.

We will denote the radius of a spherical particle with 𝑅, trusting that it will not
lead to confusion with the resistance for which we used the same symbol before. The

6Neglecting the current-density dependence of 𝜂a0 − 𝜂a0 but including the final term 𝐴𝑅𝑗 in Eq. (4.8)
gives a quadratic equation for 𝐿 that can be solved by

𝐿 =
𝐴𝑅𝜅d

2
©«
√

1 + 4
𝐴𝑅𝜅d

𝑡d
𝑞

𝑉eq − 𝜂 −𝑉d
𝐴𝑅

− 1ª®¬ ≈

√
𝜅d

𝑉eq−𝑉d−Δ𝑉
𝑞 𝑡d if 𝐴𝑅 ≪ 𝐿

𝜅d
𝑡d
𝑞

𝑉eq−𝜂−𝑉d
𝐴𝑅

if 𝐴𝑅 ≫ 𝐿
𝜅d
.

(4.11)

The bottom expression uses the expansion
√

1 + 𝑥 ≈ 1+ 𝑥
2 for 𝑥 ≪ 1. Typically, the separator will be much

thinner and less resistive than the electrode so that 𝐿/𝜅d ≫ 𝐴𝑅 and the top expression, or Eq. (4.12), will
be more relevant.

7It may be argued [6] that the intercalation of e.g. Lithium in the intercalation host graphene show in
Fig. 4.2 is not a purely faradaic process. This is a process in which electrons are transferred, and redox
reactions occur. When the charged lithium cations move between the carbon sheets, they attract electrons
in the carbon phase, creating a capacitance. Even in the absence of reactions, such a process could store
electrical energy. Both processes may also occur simultaneously.
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Material 𝐷 [m2/s]
LiCoO2 10−14 − 10−12

LiMn2O4 10−15 − 10−13

LiFePO4 10−19 − 10−18

Table 4.1: Diffusivities of lithium ions in different electrode materials used in Li-ion batteries.

characteristic time-scale for diffusion over a distance 𝑅 is8

𝑡𝐷 ≡
𝑅2

𝐷
. (4.13)

Discharging a porous battery electrode consisting of particles with radius 𝑅 over a
discharge time 𝑡d thus requires 𝑅 ≲

√
𝐷𝑡d. For a discharge time of 𝑡d ∼ 1 hour,

Table 4.1 gives a radius of a few micrometres for LiCoO2 and only a few tens of
nanometres for LiFePO2. Therefore, solid diffusion requires battery electrodes to
consist of very small particles or highly porous materials in which the electrolyte is
never far away from the electrode-electrolyte interface.

4.3.2 The single particle model
Reactants and products of the redox reactions in the electrolyte are transported by
diffusion and, in the case of ions, migration. At low to moderate discharge rates, gra-
dients in the concentration and overpotential can usually be neglected. In Chapter 3,
this was quantified using 𝑗 ≪ 𝐽𝐷 , 𝐽𝜅. Under these conditions, the concentrations
and overpotential in the electrolyte can be taken to be approximately constant, as
schematically illustrated in the below Figure 4.6. We will allow a significant drop in
concentration and potential over the separator but do consider homogeneous condi-
tions throughout the electrodes. This means that all active particles making up the
porous electrode experience the same conditions, so we can describe their charging
and discharge by considering a single representative particle.

The reactant or product ion flux 𝑁⊥ at the surface of each particle will be the
same throughout the porous electrode. The constant associated local surface current
density 𝑗⊥ adds up for all particles, using Eqs. (3.18) and (3.21), to give a total current
density magnitude

𝑗 = 𝑎𝐿| 𝑗⊥ |, = 𝑎𝐿𝑛𝐹 |𝑁⊥ |. (4.14)

Here, Eq. (3.4) gives the total volumetric surface area 𝑎 = (1 − 𝜖) 𝑎s [m2
s/m3] in terms

of the volumetric surface area 𝑎s of a single battery particle and the porosity 𝜖. As

8Eq. (2.57), for example, gave for the one-dimensional diffusion boundary layer thickness in case of a
constant flux 𝛿 ∼

√
𝐷𝑡.
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Figure 4.6: A battery electrode consisting of many small particles in a ‘single particle model’ is
represented by a single characteristic particle, assuming all particles in an electrode experience
the same electrolyte potential 𝜙 and concentration.

discussed in section 3.3.1, the multiplication factor 𝑎𝐿 is the conversion factor between
the total internal and external electrode area.

4.3.3 Diffusion in a spherical particle
We will denote the concentration of solid reactant material with a capital 𝐶 [mol/m3],
and reserve the lower case 𝑐 for the concentration of a reactant in a fluid or the
electrolyte concentration. As discussed above, we assume the redox reactions take
place at the particle surface and assume that the transport of reactants from the
interior of the battery material can be described by diffusion. We can thus describe
the solid reactant concentration 𝐶 by the general conservation equation, Eqs. (2.1)
and (2.2) without flow and sources,

𝜕𝐶

𝜕𝑡
= −∇ · 𝑵 ,where 𝑵 = −𝐷∇𝐶. (4.15)

Consider the spherical particle shown in Figure 4.7. Its solid material with an initial
concentration 𝐶max reacts at the surface at a radial coordinate 𝑟 = 𝑅, equal to the
sphere radius 𝑅. The surface flux

𝑁⊥ (𝑡) = −𝐷
𝜕𝐶

𝜕𝑟

����
𝑅

, (4.16)

is positive for flux from the solid in the direction of the electrolyte, which is the case
in Figure 4.7. The effective medium diffusivity 𝐷 used here may differ from the
material diffusivity in case the particle is porous. At the centre of the particle, by
symmetry, there is zero flux, so 𝐷 𝜕𝐶

𝜕𝑟

��
𝑟=0 = 0. Using these boundary conditions while

integrating Eq. (4.15) over the particle volume and dividing by the volume 𝑉s gives,
using the divergence theorem
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𝜕𝑟 = 0

𝐶s

𝑡

⟨𝐶⟩

𝑅

Figure 4.7: The concentration profiles in a spherical particle at various times for a constant
charge or discharge rate. Initially, the concentration profile forms a transient boundary layer
near the surface, while all of the sphere’s volume is affected for longer times.

𝑑 ⟨𝐶⟩
𝑑𝑡

= −𝑎s𝑁⊥ , (4.17)

where ⟨𝐶⟩ ≡ 1
Vs

∫
𝐶dV is the average concentration, and 𝑎s ≡ 𝐴s/Vs the particle

volumetric surface area. Equation (4.17) holds for any particle shape, but for a sphere
we have 𝑎s =

4𝜋𝑅2
4
3𝜋𝑅

3 = 3
𝑅 .9

Equation (4.16) can be solved analytically, resulting in a somewhat complicated
series solution for 𝐶(𝑟, 𝑡). Alternatively, in two limiting cases, we can solve Eq. (4.17)
for the average concentration ⟨𝐶⟩. We define the mass transfer coefficient by the ratio
of the flux and the difference between the average and surface concentration:

𝑘m ≡
𝑁⊥

⟨𝐶⟩ − 𝐶s
, (4.18)

where 𝐶s ≡ 𝐶(𝑟 = 𝑅) is the surface concentration. Simple expressions for this mass
transfer coefficient exist in two distinct regimes, shown in Figure 4.7:

1. Developing (𝑡 ≪ 𝑡𝐷): the concentration boundary layer is much thinner than the
particle radius.

2. Developed (𝑡 ≫ 𝑡𝐷): the concentration profile changes throughout the entire
particle.

For short times 𝑡 ≪ 𝑡𝐷 , the concentration varies only in a thin layer near the particle
surface, so the exact particle shape does not matter, and we can use the solution of the
one-dimensional diffusion equation. With 𝑁⊥ = 𝐷

⟨𝐶⟩−𝐶s
𝛿 we see from Eq. (4.18) that

9In case of spherical symmetry, ∇2𝐶 = 1
𝑟2

𝜕
𝜕𝑟

(
𝑟2 𝜕𝐶

𝜕𝑟

)
. Multiplying Eq. (4.15) by 4𝜋𝑟2 and integrating

from 𝑟 = 0 to 𝑟 = 𝑅 and dividing by the particle volume𝑉s = 4𝜋𝑅3/3 gives with ⟨𝐶⟩ = 1
𝑉s

∫ 𝑅

0 𝐶 (𝑟) 4𝜋𝑟2𝑑𝑟,
again, Eq. (4.17). However, the use of the divergence theorem is arguably easier and more general.
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𝑘m = 𝐷/𝛿. For a constant flux 𝑁⊥, Sand’s analysis gives a boundary layer thickness
described by Eq. (2.57) so the mass transfer coefficient 𝑘m0 at time 𝑡 = 0 is given by

𝑘m0 =

√
𝜋𝐷
4𝑡 . (4.19)

While initially it is very high, the mass transfer coefficient decreases as time progresses
and the boundary layer thickness increases. As the boundary layer approaches the
order of the particle size, Eq. (4.19) becomes invalid. In Appendix 4.A, we show for a
spherical particle that 𝛿 should be replaced by 𝑅/5 in this case, so the mass transfer
coefficient for times 𝑡 ≫ 𝑡𝐷 reads

𝑘m∞ =
5𝐷
𝑅
. (4.20)

The smaller the particle, the larger the mass transfer coefficient. This is expected
because of the larger concentration gradients that are associated with smaller length-
scales.

4.3.4 State of charge
Assuming a first-order reaction takes place at the particle surface, we can write

𝑁⊥ = 𝑘𝐶s , (4.21)
where 𝑘 is the reaction rate coefficient. In general, this will depend on the overpo-
tential and the electrolyte concentration. In a single particle battery model, these are
assumed constant throughout the electrode, so we can treat 𝑘 as a constant here.

Combining Eqs. (4.21) and (4.18), we can solve for 𝐶s =
𝑘m
𝑘+𝑘m
⟨𝐶⟩ to give

𝑁⊥ = 𝑘tot ⟨𝐶⟩ ,where 1
𝑘tot

=
1
𝑘
+ 1
𝑘m
. (4.22)

The total transfer resistance 1/𝑘tot is obtained as a reaction resistance 1/𝑘 and a mass
transfer resistance 1/𝑘m, acting in series. With this, Eq. (4.17) can be written as

𝑑 ⟨𝐶⟩
𝑑𝑡

= −𝑎s𝑘tot ⟨𝐶⟩ . (4.23)

The state of charge is given by the average reactant concentration divided by the
maximum. Integrating Eq. (4.23), with the initial condition ⟨𝐶⟩ (𝑡 = 0) = 𝐶max, gives

SoC =
⟨𝐶⟩
𝐶max

= e−
∫

𝑑𝑡
𝜏 ,with 𝜏 =

1
𝑎s𝑘tot

. (4.24)

For 𝑡 ≪ 𝑡𝐷 , the boundary layer will be very thin, and the mass transfer resistance
1/𝑘m can be neglected. In case 𝑘tot ≈ 𝑘 is constant, the state of charge SoC =

⟨𝐶⟩
𝐶max

=

e−𝑘𝑎s𝑡 decays exponentially with time.
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For 𝑡 ≫ 𝑡𝐷 , assuming 1/𝑘m ≫ 1/𝑘, for a spherical particle Eq. (4.20) can be used
to give for the characteristic time-scale of Eq. (4.24)

𝜏∞ ≡
1

𝑘m∞𝑎s
=

𝑅2

15𝐷 . (4.25)

In this regime of mass transfer-limited discharging, Eq. (4.25) shows that smaller
particles can be discharged faster. However, for very small particles, the reaction
may become limiting. As an example, for a solid diffusivity 𝐷 = 10−13 m2/s, to have
𝜏∞ ≲ 1 h requires a particle radius 𝑅 ≲ 75 μm.

In both of the above examples, the discharge rate decreases with time. However,
often, batteries will be used with a more or less constant discharge rate. In this case,
the state of charge will go down linearly as SoC = 1− 𝑡

𝜏0
. Inserting this into Eq. (4.24)

gives

1
𝜏
= 𝑎s𝑘tot =

1
𝜏0 − 𝑡

. (4.26)

So, as time increases, the total transfer coefficient has to decrease to compensate
for the reduced reactant concentration. For redox reactions, this can be realised by
increasing the overpotential. As 𝑡 approaches 𝜏0 = 1

𝑎s𝑘(𝑡=0) , Eq. (4.26) shows that ever-
larger overpotentials will be needed. This additional concentration overpotential will
be quantified further in the next section.

4.3.5 Polarisation relation
Assuming first-order Tafel kinetics 𝑗⊥ = 𝑗∗

𝐶s
𝐶max

e𝜂/𝑏 so, using Eq. (4.14), the overpoten-
tial is given by

𝜂 = 𝑏 ln
©«

𝑗𝐶max/𝐽∗
⟨𝐶⟩

(
1 − 𝑗

𝑗lim

) ª®®¬, (4.27)

where the numerator represents the surface concentration 𝐶s, Eq. (3.43) gives 𝐽∗ ≡
𝑎𝐿𝑗∗, and we introduced

𝑗lim = 𝑎𝐿𝑛𝐹𝑘m⟨𝐶⟩. (4.28)

Using Eq. (4.24), Eq. (4.27) can be written as

𝜂

𝑏
= ln

(
𝑗

𝐽∗

)
+

∫
𝑑𝑡

𝜏
+ ln ©« 1

1 − 𝑗

𝑗lim

ª®¬ . (4.29)

where 𝑗lim = 𝑎𝐿𝑛𝐹𝑘m𝐶maxe−
∫

𝑑𝑡
𝜏 . Here, the first term represents the activation over-

potential. The second term represents the concentration overpotential due to the
decrease in the average concentration. The final term is the additional concentration
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overpotential that arises because, as a result of internal mass transport limitations,
the surface concentration 𝐶s will always be below the average particle concentration.
This term can diverge even for non-zero average concentration, because the internal
mass transfer coefficient is finite.

Unlike the other terms, the second term in Eq. (4.29) is not a logarithm. This is
because the average concentration decreases exponentially, cancelling the logarithm.
Because the solid concentration decreases exponentially, the overpotential increases
linearly with time. It implies that for each decrease of the state of charge SoC =

⟨𝐶⟩/𝐶max by a factor e, the overpotential 𝜂 increases with a Tafel slope 𝑏. Or, every
halving in the state of charge adds 𝑏ln2 ≈ 0.7𝑏 to 𝜂. As 𝑗 approaches 𝑗lim, the increase
will increase dramatically. While the physics is quite different, we thus find a similar
behaviour as with the moving reaction zone model, as shown in Fig. 4.5. Initially, cell
potential decreases linearly, followed by a large drop due to activation overpotential
associated with reactant depletion until the cut-off voltage is reached.

4.3.6 Pseudo-2D Model *
Most battery models use some form of the pseudo-two-dimensional (or P2D) model
developed by Doyle, Fuller, and Newman [10]. It effectively applies a single parti-
cle model to each point along a one-dimensional coordinate 𝑥 through the battery
electrode. Therefore, it allows for the inclusion of both the behaviour inside the
battery particles and in the electrolyte. For the electrolyte, we may use the porous
electrode binary electrolyte equations consisting of Eq. (3.15) and (3.18) combined
with Eq. (2.41) without flow

𝜕𝜖𝑐

𝜕𝑡
− ∇ · (𝐷a∇𝑐) = 𝑎 𝑗⊥ , (4.30)

where for the local current density the Butler-Volmer equation is used,

𝑗⊥ = 𝑗∗s
(
e𝛼

𝐹𝜂
R𝑇 − e−(1−𝛼)

𝐹𝜂
R𝑇

)
. (4.31)

Here 𝑗∗s may depend on the surface concentration of electrolyte 𝑐s and solid reactant
𝐶s, see Eq. (1.B.42). For a binary electrolyte with an anion with zero flux,10 Eqs. (2.49)
and (2.51) give for the flux

𝑁(𝑥 = 0) = − 𝐷a
1 − 𝑡+

𝑑𝑐

𝑑𝑥
, (4.32)

which forms the boundary condition to Eq. (4.30). This approach allows each par-
ticle to experience a different electrolyte concentration and overpotential and have
a different time evolution. At each electrode position, we have a second coordinate
𝑟 inside the particle. The solid concentration is obtained by solving Eq. (4.15) or, in
radial coordinates,

10For example, in a Lithium-ion battery where lithium cations carry the charge. For an zero-flux cation
𝑡+ is replaced by 𝑡− in Eq. (4.32).
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𝜕𝐶

𝜕𝑡
=
𝐷

𝑟2
𝜕

𝜕𝑟

(
𝑟2 𝜕𝐶

𝜕𝑟

)
. (4.33)

Solving for the entire concentration profile as a function of 𝑟 is not necessary, since
only its surface value 𝐶s = 𝐶(𝑟 = 𝑅) is needed. For example, solving Eqs. (4.23) and
Eq. (4.20) can lead to a much faster one-dimensional model.

A concentrated-solution theory equation like 𝒊 = −𝜅∇𝜙 − 𝜅d∇ ln 𝑐 is typically
used since the electrolyte concentration can be high. This closely resembles our
dilute solution theory expression Eq. (2.46), with the difference that the conductivity
𝜅 and diffusive conductivity 𝜅d = 𝜒𝜅 will strongly depend on the local electrolyte
concentration.

4.4 Binary electrolyte
In the moving reaction zone model of section 4.2 we assumed Ohm’s law with a con-
stant conductivity, which may be fine for e.g. solid-state batteries. However, battery
electrolytes are often binary electrolytes, whose concentration can vary throughout
the electrode. As in section 2.4, we consider the equations for a monovalent binary
electrolyte with a reacting anion and an zero-flux cation.11 Equation (2.49) gives the
conductivity 𝜅 = −𝑖/𝜙′ as

𝜅 = 𝜅0𝑐,where 𝜅0 =
2𝐷−𝐹2𝑐0

R𝑇
. (4.34)

Here, the dimensionless concentration 𝑐 = 𝑐/𝑐0 is obtained by dividing by the elec-
trolyte concentration 𝑐0 = 𝑐(𝑥 = 0) at the entrance of the porous electrode. As
derived in section 2.4.3, the factor two originates from diffusion, which contributes to
the current in equal proportion to migration. Since the conductivity now depends on
concentration, we have to modify the porous electrode equations (3.44)-(3.46) slightly,
to

𝑐′ = 𝑖/2𝐹𝐷−𝑐0 , (4.35)
𝜂′ = 𝑖/𝜅0𝑐, (4.36)

𝑖′ = 𝑎 𝑗∗𝑐
re𝜂/𝑏 , (4.37)

where we used Eq. (2.49) to modify Eq. (3.44). For generality, we consider a general
reaction order r.

Dividing Eq. (4.35) by (4.36), we get

11This is relevant, for example, for an alkaline battery with a K+OH− electrolyte. Equations (4.3)-
(4.4) show that OH− is a reactant at the anode during discharging and at the cathode during charging.
Non-monovalent electrolytes like H2+SO42− can be described using small modifications considered in
Appendix 2.G. The case of a reacting cation, to describe a Li-ion battery electrolyte, for example, is
obtained by changing all pluses into minuses and minuses into pluses below.
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𝜂/𝑏

𝑥/𝐿
0

Figure 4.8: A schematic illustration of the transport of ions of a binary electrolyte in a porous
electrode where 𝑥 = 0 represents the reaction front or the ‘entrance’ of the porous electrode at
the start of a charge or discharge.

𝑑𝑐

𝑑𝜂
=

𝑐

R𝑇/𝐹 → 𝑐 = e𝐹
𝜂−𝜂0
R𝑇 . (4.38)

As expected for an (cat)ion in thermal equilibrium, the electrolyte concentration
is described by a Boltzmann distribution. As the current penetrates into the porous
electrode, the overpotential and the reactant concentration decrease due to resistance
and diffusion, respectively. Figure 4.8 shows the expected solution schematically.
Here, 𝑥 = 0 represents the ‘entrance’ of the porous electrode when the battery is fully
charged or discharged. Alternatively, it represents the location of a moving reaction
zone front. In this case, all battery material has reacted for 𝑥 < 0 while for 𝑥 > 0
the battery electrode has not yet reacted, and 𝐿 becomes the length of this unreacted
area.

Differentiating Eq. (4.35) with respect to 𝑥, inserting Eqs. (4.37) and (4.38) and
using 𝑏 = R𝑇/𝛼𝐹 gives

𝑐
′′
=

2M2/𝐿2

1 + r+ 𝛼
𝑐r+𝛼 ,where M2 ≡ 𝐿2 1 + r+ 𝛼

2
𝑎 𝑗∗e𝜂0/𝑏

2𝐹𝐷−𝑐0
. (4.39)

This is equal to a reaction-diffusion equation with a reaction order not equal to
r but r + 𝛼. This is because the reaction coefficient, through its proportionality to
e𝜂/𝑏 = e𝜂0/𝑏𝑐𝛼, depends itself on concentration.

Eq. (4.39) can be solved analytically only for particular values of r+ 𝛼. However,
for M≫ 1 we can deploy a similar approach as that followed in section 3.4.3. Similar
to Eq. (3.63), we can write 𝑐′′ = 1

2
𝑑𝑐′2
𝑑𝑐

. Integrating Eq. (4.39) from 𝑥 = 0 to the electrode
end at 𝑥 = 𝐿 gives



CHAPTER 4. BATTERIES 125

𝑐′2
𝐿
− 𝑐′20
2 =

2M2/𝐿2

(1 + r+ 𝛼)2
(
𝑐1+r+𝛼
𝐿 − 𝑐1+r+𝛼

0

) 𝑐′
𝐿
≪1
−−−−→ |𝑐′0 | =

2M/𝐿
1 + r+ 𝛼

. (4.40)

The final expression holds in case of sufficiently large current densities, giving strong
diffusion limitations. As illustrated in Fig. 4.8, the reactant concentration will then
approximately vanish at the end of the electrode. Comparing this expression with
Eq. (4.35), evaluated at 𝑥 = 0, gives

M =
1 + r+ 𝛼

2
𝑗𝐿

2𝐹𝐷−𝑐0
. (4.41)

Comparing this expression with that of Eq. (4.39) gives, after some algebra

𝜂0 ≈ 2𝑏ln
©«

𝑗√
4𝐹𝐷−𝑐0
1+r+𝛼 𝑎 𝑗∗

ª®®¬ , (4.42)

where we again find a doubled Tafel slope 2𝑏. Equation 4.42 may equally be written in
the general form 𝜂0 = 𝑏ln

(
𝑗

𝐽∗E

)
of Eq. (3.42) with 𝐽∗ = 𝑎𝐿𝑗∗ and an effectiveness factor

E = 1/M.12 This explicit polarisation relationship is equal to Eq. (3.60), obtained
in the case of only diffusion limitations, upon replacing 𝐷 → 2𝐷−

(1+𝑟+𝛼)/2 . The only
differences are the doubled diffusivity 𝐷 = 2𝐷− and the division by (1 + r + 𝛼)/2.
For a reaction order r = 1 and 𝛼 = 1/2 this becomes 1.6𝐷−. This result is also equal
to Eq. (3.65), obtained for a constant conductivity, upon replacing 𝑏 → R𝑇/𝐹

1+r+𝛼 .

4.5 Summary
• When 𝑗 ≫ 𝐽𝜅, the moving reaction zone model gives voltage losses in a battery

electrode as 𝜂 + 𝑗𝑥d/𝜅d where 𝑥d = SoC𝐿 is the position of the reaction zone.

• When 𝑗 ≪ 𝐽𝜅, the single-particle model describes the state of charge SoC =

⟨𝐶⟩
𝐶max

= e−
∫

𝑎s
1/𝑘+1/𝑘m 𝑑𝑡 (4.24) using a series resistance of the inverse of a reaction-

rate coefficient 𝑘 = 𝑗∗
𝑛𝐹𝐶max

e𝜂/𝑏 and the inverse of a mass-transfer coefficient 𝑘m,
the latter tending to 5𝐷/𝑅 for long times.

• For a binary electrolyte, the diffusion and migration flux are equal, and we
obtain for an 𝑟-th order reaction in case of strong transport limitations an
effectiveness factor E ≈ 1/M ≪ with M ≈ 1+𝑟+𝛼

2
𝑗

2𝐹𝐷−𝑐0
≫ 1.

12Therefore, we anticipate that, as discussed in section 3.4.4, using E ≈ 1
1+M will give a reasonable

approximation for all current densities.
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4.6 Exercises

Exercise 4.1

A present disadvantage of electric vehicles would disappear if their charging time
could be reduced to a time not much longer than is required for refuelling a petrol
car.
a. If we want to charge an electric vehicle in 5 minutes, for what E-rate should its

battery be designed?
b. For a 50 kWh battery, to what power does this rate correspond?

Exercise 4.2
Consider a battery electrode operated at high current density (𝑗 ≫ 𝐽𝜅), so the moving
reaction zone model can be used. The battery has a separator of thickness 𝐿s and
conductivity 𝜅s. You may neglect the activation overpotential.
a. Write an expression for the potential difference Δ𝜙s across the separator at a

current density 𝑗.
b. Now, consider a single porous electrode with a volumetric capacity 𝑞. We switch

on the current when the electrode is fully charged. Write an expression for the
position 𝑥d of the reaction zone at a certain time, 𝑡.

c. Assuming that the conductivity of the reacted electrode is 𝜅d, write an expression
for the potential drop over the distance 𝑥d of reacted electrode.

d. Assuming no appreciable voltage losses arise at the other electrode of the battery,
and with an equilibrium voltage𝑉eq, write an expression for the voltage𝑉cell that
can be drawn from the battery at time 𝑡.

e. The amount of useful energy or work U that can be obtained from the battery is
given by the product of terminal voltage times the charge transferred. Using the
above formulation for the battery terminal voltage, write an expression for this
total energy obtained over a discharge time 𝑡.

f. Using the above formulation, write an expression for the optimal thickness 𝐿opt
of the electrode for maximal capacity. (Hint: this implies the whole electrode is
utilised when the maximal capacity is used)

Exercise 4.3
Consider a laptop Li-ion battery consisting of many cells in parallel. Each cell has a
cross-sectional area of 𝐴 = 5 cm2, and consists of an anode and a cathode of 𝐿 = 0.1
mm thick and a volumetric capacity of 𝑞 =106 Ah/m3 each.
a. When discharging at C/5, what current is drawn per cell?
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b. Consider a discharge of this battery using a moving reaction zone model, assum-
ing equal ohmic losses in anode and cathode. The ohmic drop over one fully
discharged electrode is ten times that over the separator, which is 0.1 V at the
considered current density. If the equilibrium voltage is𝑉eq = 3.6 V, at what state
of charge is the cut-off voltage 𝑉d = 3 V reached?

Exercises 4.4-4.21
Fill in the missing steps in the main text, indicated by the symbol .
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Appendices *

4.A Parabolic polynomial approximation
We postulate that the concentration profile can be written as

𝐶(𝑟, 𝑡) = ⟨𝐶⟩(𝑡) + 𝑁⊥(𝑡)𝑅
𝐷

𝑓 (𝑟). (4.A.43)

To satisfy Eq. (4.16), we require 𝑓 (𝑅) = −1/𝑅 and ⟨ 𝑓 ⟩ = 0 to ensure that ⟨𝐶⟩ represents
the average of 𝐶. In case of spherical symmetry ∇2𝐶 = 1

𝑟2
𝑑
𝑑𝑟

(
𝑟2 𝑑𝐶

𝑑𝑟

)
and Eq. (4.15)

becomes

𝜕𝐶

𝜕𝑡
=
𝐷

𝑟2

(
𝑟2 𝑑𝐶

𝑑𝑟

)
. (4.A.44)

Inserting Eq. (4.A.43) gives −3
𝑅2 = 1

𝑟2
𝑑
𝑑𝑟

(
𝑟2 𝑑𝑓

𝑑𝑟

)
. This is solved by 𝑓 (𝑟) = 3

10 − 𝑟2

2𝑅2 , which

satisfies 𝑑𝑓

𝑑𝑟
(𝑟 = 𝑅) = −1/𝑅 and ⟨ 𝑓 ⟩ = 1

4𝜋𝑅2

∫ 𝑅

0 4𝜋𝑟2 𝑓 (𝑟)𝑑𝑟 = 0. This parabolic solution
gives the name to this approximation method, which is popular in battery modelling.
Inserting Eq. (4.A.43) in Eq. (4.18) gives

𝑘m∞ = − 𝐷

𝑅 𝑓 (𝑅) =
5𝐷
𝑅
. (4.A.45)

4.B Dimensionless binary electrolyte porous electrode model
For a binary electrolyte with varying conductivity, given by Eq. (4.34), the porous
electrode equations (4.35)-(4.37) become in the dimensionless notation of section 3.B
(and for a general reaction order 𝑟):

𝑐′ = −𝑗𝐷 𝚤, �̄�′ = −𝑗𝜅/𝑐𝚤, 𝑗∗𝚤
′ = −𝑐𝑟e�̄� . (4.B.46)

Here 𝑗𝜅 = 𝑗/𝐽𝜅 and 𝑗𝐷 = 𝑗/𝑗𝐷 , with 𝐽𝜅 and 𝐽𝐷 given by

𝐽𝜅 =
𝜅0𝑏

𝐿
, 𝐽𝐷 =

2𝐹𝐷−𝑐0
𝐿

. (4.B.47)
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A factor two multiplies the anion diffusivity in 𝐽𝐷 in accordance with Eq. (2.49). With
these definitions and 𝑏 = R𝑇/𝛼𝐹 we have

𝐽𝐷

𝐽𝜅
= 𝛼. (4.B.48)

Therefore, for a binary electrolyte, there is no need for a separate 𝐽𝜅 and 𝐽𝐷 since
migration and diffusion are coupled.

By differentiating the first of Eqs. (4.B.46) and inserting the last we obtain, with
𝑐 = e

�̄�−�̄�0
𝛼 from Eq. (4.38),

𝑐
′′
=
𝑗𝐷𝑐

𝑟

𝑗∗
e�̄� =

2M2

1 + 𝑟 + 𝛼
𝑐𝑟+𝛼 , (4.B.49)

where
M2 ≡ 1 + 𝑟 + 𝛼

2
𝑗𝐷e�̄�0

𝑗∗
=

1 + 𝑟 + 𝛼
2 𝑗𝐷 . (4.B.50)

The final expression in Eq. (4.B.50) is the dimensionless form of Eq. (4.41). The dimen-
sionless overpotential �̄�0 = ln

(
𝑗∗
E

)
with E ≈ 1/M ≪ 1 becomes �̄�0 = ln

( 1+𝑟+𝛼
2 𝑗𝐷 𝑗∗

)
.



Chapter 5

Fuel cells

This chapter concerns the modelling of fuel cells, with a particular focus on the effects of
produced water in hydrogen fuel cells. First, the transport of water in the membrane and flow
channels is briefly described, primarily empirically. A multiphase Darcy flow model is derived
for water transport in the diffusion layer. Finally, a flooded agglomerate model of the cata-
lyst layer is presented that takes into account diffusion inside the water-filled catalyst particles.

Fuel cells are galvanic cells that generate electricity, as illustrated in Figure 5.1. Where
batteries have solid reactants, fuel cells have gaseous or sometimes liquid reactants.
Similar to rechargeable batteries, the reaction in fuel cells can sometimes be reversed,
allowing the gasses or liquids to store energy. If these galvanic and electrolytic
reactions occur within the same cell, the resulting system is called a flow battery.
Therefore, many aspects of fuel cell modelling also apply to flow batteries. Con-
versely, most aspects treated in chapter 7 on redox flow batteries will also be relevant
for fuel cells. While chapter 7 will focus on two-dimensional single-phase transport,
we will consider aspects related to multiphase flow. In particular, we will focus on the
case in which gaseous reactants produce liquid products. This occurs, for example,
in a PEM1 fuel cell. Hydrogen and oxygen are converted to water according to the
following redox reactions

2H2 → 4H+ + 4e− (anode), (5.1)
O2 + 4H+ + 4e− → 2H2O. (cathode) (5.2)

5.1 Types of fuel cells *
A concise overview of the most important types of fuel cells is given in Table 5.1. The
redox reactions given by Eqs. (5.1) and (5.2) assume acidic conditions, as occur in

1PEM can stand for either Polymer Electrolyte Membrane or Proton Exchange Membrane.
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H2
O2Anode

Cathode
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O2 flow fieldH2 flow field

Figure 5.1: The different types of fuel cells are usually named after their electrolyte and
typically operate on hydrogen, oxygen, or air.

e.g. polymer electrolyte fuel cells (PEMFCs) and phosphoric acid fuel cells (PAFCs).2
An exception is the direct-methanol fuel cell (DMFC), which, as its name suggests,
converts methanol instead of hydrogen. Unlike the other fuel cells, it is named after
its reactant and not after its electrolyte or membrane.

Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) offer greater
fuel versatility than traditional fuel cells, which are limited to only hydrogen. These
types of fuel cells also allow various other input gasses, such as methane. Due to
their high operating temperature, they can internally catalytically reform these gases
into hydrogen. Their high temperature allows for cheaper catalysts but leads to a
more complex design and higher material requirements.

Alkaline fuel cells were the first fuel cells commercially available, following their
introduction during the 1960 Apollo space missions. However, catalyst poisoning
due to CO and CO2 from the atmosphere somewhat limited their success on Earth.
Phosphoric acid fuel cells (PAFC) do not operate at the same high temperatures as
SOFCs and MCFCs but still benefit from higher temperatures, which allow them to
increase their electrolyte conductivity. However, these fuel cells are currently losing
ground to polymer electrolyte fuel cells (PEMFC), which will be the primary focus
of this chapter.

2In alkaline fuel cells, hydroxide ions (OH−) are the charge carrier and 4OH− should be added on
both sides of both reactions. Subsequently 4OH− + 4H+ may be replaced by 4H2O. In SOFCs, the oxygen
ion (O2−) is the charge carrier and 2O2− should be added on both sides of both reactions. Subsequently
2O2− + 4H+ may be replaced by 2H2O. Finally, MCFCs have CO2−

3 as the charge carrier and 2CO2−
3 should

be added along with using 2CO2−
3 + 4H+ → 2H2O + 2CO2.
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Figure 5.2: A graph showing typical polarisation curves of an Alkaline Fuel Cell (AFC),
Polymer Electrolyte Membrane (PEM), and Solid Oxide Fuel Cell (SOFC). The bar charts on
the right show the approximate contributions of activation, mass transfer and ohmic losses
to the overall cell voltage of the PEMFC and SOFC, operating at 0.7 V. It is evident, from
the strong linear decrease, that the SOFC in this figure experiences substantial ohmic losses.
However, the activation losses are considerably smaller, allowing it to outperform the PEMFC
at low current densities. With kind permission from Thomas F. Fuller and John Harb for
allowing re-use of their data [12]..

PEMFC AFC PAFC MCFC SOFC DMFC
Electrolyte Polymer KOH H3PO4 K2CO3 Ceramics Polymer

Catalyst (a/c) Pt/Ni Fe,Ni/Ag Pt Ni Cermet Pt,Ru
Temp. (◦C) 40-80 65-220 205 650 600-1000 25-90

Charge carrier H+ OH− H+ CO3
−− O−− H+

Table 5.1: A short overview of the most important fuel cells: the polymer electrolyte/proton
exchange membrane (PEMFC), alkaline (AFC), phosphoric acid (PAFC), solid oxide (SOFC),
and direct methanol (DMFC) fuel cell. Only the most commonly used materials and operating
temperatures are indicated. A cermet is a ceramics-metal mixture, typically Nickel with
Yttria-Stabilised Zirconium (YSZ).

Figure 5.2 shows typical polarisation curves of three different types of fuel cells, the
AFC, PEM, and SOFC.

The splitting of hydrogen at the anode (Eq. (5.1)) is a simple reaction. In an acidic
medium, platinum is an almost ideal catalyst, so the activation losses involved are
often negligible. This is clear from the bottom part of Fig. 5.2, where the losses of a
PEMFC and SOFC are split into their different components at a current density for
which their voltage is similar. The anode polarisation, shown at the bottom, is very
small. Clearly, the ohmic resistance of the reported SOFC is much higher than that of
the shown PEMFC. This means that the latter clearly outperforms the former at high
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current densities. However, at low current densities, the cell voltage of the SOFC
is substantially higher than that of the PEMFC because of the higher equilibrium
voltage associated with its higher temperature.

5.2 Water management

5.2.1 Catalyst layer

O2

H2O
e−

H+

O2 diffusion

H2O diffusion

CL

m
em

br
an

e

Figure 5.3: Left: a schematic illustration of PEM fuel cell carbon-supported catalyst particle
showing the black catalyst particles surrounded by a carbon/ionomer/binder mixture. Right:
water that is produced at the cathode catalyst layer (CL) of a PEM fuel cell permeates as a
liquid by capillary action or diffuses out as water vapour. The gas flow of oxygen or air can
transport away droplets that form in the flow channel. [10]

At the cathode of a PEMFC, oxygen reacts with electrons, and the protons are
transported from the membrane to form water according to Eq. (5.2). The cathode
catalyst layer, therefore, plays an important and intricate role, as it needs to facilitate
the conduction of protons and electrons while also allowing gases to enter and liquid
water to exit. These different demands are achieved by porous particles whose pores
are wetted by the generated water. Oxygen can dissolve in this water and reach the
active catalytic sites dispersed throughout the particles. These catalyst nanoparticles
should be in good contact with the electrolyte, which is a solid polymer in a PEM fuel
cell, and the electrode material, typically carbon. These two phases are mixed and
held together by a binder material. See, for example, Figure 5.13. Additionally, the
right-hand side of Fig. 5.3 provides a schematic representation of the path followed
by liquid water and water vapour.

A gas diffusion layer (GDL) exists between the gas channel, which provides the
reactant gases, and the thin catalyst layer, where the reactions take place. Because the
catalyst layer is integrated into this layer, the combination is also sometimes called a
gas-diffusion electrode (GDE). Section 5.3 will be fully dedicated to the mathematical
description of this layer.
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5.2.2 Flow channel
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Figure 5.4: Left: different flow regimes in a PEM fuel cell flow channel bording a carbon paper
GDL [31] with (a) droplets, (b) annular film (c) slug flow. Right: Cell voltage measurements
at 80 ◦C show a strong dependence on average air flow velocity. [31] The transition from the
droplet flow regime to the occurrence of films and slugs, below roughly 4 m/s, was assumed
to be at least partly responsible. [31]

Water making its way through the diffusion layer at the cathode side has to be
transported out of the cell through the flow channel. The left-hand side of Fig. 5.4
shows different possible flow regimes. The droplet or spray regime may be the most
favourable, as gas is in the continuous phase. In the film and slug flow regimes, the
continuous liquid phase impedes the efficient transport of oxygen.
Through the resulting concentration overpotential, the flow channel can affect the
cell performance. The right-hand side picture in Figure 5.4 shows the influence of
the gas flow velocity on the cell voltage. The occurrence of liquid films and slugs in
the flow channel was assumed to be at least partially responsible for the decrease in
cell voltage at relatively low velocities and high current densities. [31]

5.2.3 Membrane
The presence of water is necessary for the polymer membrane to function well. The
most commonly used polymer electrolyte membrane is Nafion.3 The conductivity
of this polymeric membrane material is crucially dependent on the water content,
typically expressed in terms of a parameter 𝜆H2O indicating the number of water

3This is a sulfonated tetrafluoroethylene. Ethylene (C2H4) in which the hydrogen atoms are replaced
by fluorine and which is polymerised into chains that are terminated by a sulfonic acid (SO3H) group.
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Figure 5.5: A schematic of a PEM fuel cell, focused on the membrane in grey. Protons moving
from anode to cathode bring along the water with them through electro-osmotic drag. On the
other hand, water will also want to diffuse in the opposite direction, from cathode to anode.

molecules per sulfonic acid group. The PEM membrane conductivity 𝜅 ≈ 𝜅0+𝜆H2O𝜅′

roughly increases linearly with the water content.
Protons can hop along the polymeric structures, but while doing so, they typically

drag along several water molecules. This phenomenon is referred to as electro-
osmotic drag. The electro-osmotic drag coefficient, 𝜉, denotes the average number
of water molecules carried per proton. Consequently, an electro-osmotic molar flux
𝜉𝒋/𝐹 of water will follow the proton current from the anode to the cathode.

Because water is generated at the cathode, see Eq. (5.2), it tends to diffuse through
the membrane to the anode. An accurate quantitative picture requires concentrated
solution theory. However, as a rough approximation, we may write

𝑵H2O ≈
𝜉𝒋
𝐹
− 𝐷∇𝑐H2O. (5.3)

Note that in a membrane, water can be a minority species and can build up gradi-
ents. Fick’s law of diffusion has been found to hold reasonably well for many polymer
membranes. The balance between these opposing fluxes determines how well the
membrane is hydrated and, therefore, its conductivity. In this way, water transport
significantly impacts the overall cell resistance. Adding to this possible flooding of
the catalyst layer, discussed in the next section, water management emerges as a
complex but important aspect of obtaining good fuel cell performance.

5.3 Multiphase gas diffusion layer model
The gas diffusion layer typically consists of carbon microfibers made into felts, cloths,
or papers. Coatings of PTFE (Teflon) or similar materials are used to make the fibres
hydrophobic. This porous layer is placed in between the catalyst layer and the flow
channel. It serves several purposes:

1. Providing mechanical strength and shielding the precious and fragile catalyst
layer from the channel flow, reducing erosion and degradation.
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Figure 5.6: This idealised schematic of a hydrophobic (contact angle 𝜗 > 90◦) cathode
diffusion layer illustrates how liquid water, produced at the catalyst layer (CL) on the left, is
transported towards the flow channel on the right, through ‘channels’ formed by the largest
pores.

2. Providing an electronic connection between the catalyst particles and the bipo-
lar plate.

3. Removing water due to its hydrophobic nature, while allowing oxygen to enter.

This section will primarily focus on this last functionality. The gas phase will
contain significant amounts of water vapour at temperatures approaching the boiling
point. We will consider relatively low temperatures, so we may neglect water vapour
transport. We will also neglect the frictional pressure drop due to gas flow, which will
be a reasonable approximation at liquid fractions that are not too high. Therefore,
the following model is not a substitute for more rigorous models but serves primarily
to illustrate the important mechanism of capillary transport.

Figure 5.6 shows the cathode diffusion layer, where liquid water is generated at
the catalyst layer (CL) on the left and transported by capillary action out to the right.
The capillary force, or surface tension force, keeps the liquid together. It allows
the formation of droplets on the surface of the diffusion layer, as shown on the left
Fig. 5.4. Next, the gas flow shears and takes away these droplets.

The cathodic gas diffusion layer is porous and resembles paper or a sponge. But
because it is made hydrophobic, it will soak up gas instead of water. A water droplet
on the surface of a hydrophobic material will approximately have the shape of a
capped sphere. As illustrated in Fig. 5.6, the contact angle 𝜗 is defined as the angle
between the surface of the material and the surface of the droplet, through the liquid
phase.4 This angle will be larger than ninety degrees for a hydrophobic surface,
creating droplets larger than hemispheres.

The approximately spherical shape of droplets arises because the attractive forces
between water molecules are much larger than between gas molecules. This results in
a minimisation of the droplet surface area. Although attractive forces exist between

4On a surface that is not flat but rough or irregular over the scale of the wetted area, like the porous
materials we consider here, droplets will show an apparent contact angle that may differ from the contact
angle on a flat surface of the same material, which can be described by the Cassie-Baxter equation.
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Figure 5.7: The pressure inside a droplet or bubble is elevated compared to its surroundings
by the Laplace pressure 𝑝L. It is caused by the attractive forces in the liquid. Their tangentially
oriented force at the gas-liquid surface results in a net inwards surface tension force, somewhat
similar to the force exerted by the rubber surface of a balloon. Therefore, increasing the radius
by an infinitesimal amount from 𝑅 to𝑅+d𝑅 results in work d𝑊 done by the Laplace pressure.

the water and the solid surface, for a hydrophobic surface, these are weaker than
those between water molecules, resulting in a limited wetted area.

The liquid is pushed away from where it is produced near the catalyst layer by
pressure forces. The left part of Fig. 5.6 shows a magnification of a pore splitting into
three smaller pores. Due to the hydrophobic nature of the pores, the liquid chooses
to flow through the largest pores. Despite a positive pressure difference 𝑝l > 𝑝g
between the liquid and the gas, the liquid does not enter the small capillary. The
liquid follows irregular paths through preferentially larger pores. The reason can be
understood using the concept of capillary pressure.

5.3.1 Capillary pressure
Surface tension results from the attractive forces between molecules making up a
liquid. In the bulk, these forces are in all directions, resulting in a net zero force.
However, they do not exactly cancel each other out on a curved gas-liquid interface.
As illustrated in Fig. 5.7, the direction of their net pulling force is tangential to the
surface. Due to the curvature, this results in a net inward force. This restoring
force is trying to make the surface as flat as possible. This can be described by the
minimisation of a surface energy U = 𝛾𝐴 proportional to the surface area 𝐴 times the
surface tension 𝛾 [J/m2]. Surface tension hardly depends on the type of gas and is a
property primarily of liquids.5

For the spherical gas-liquid surface of Fig. 5.7, this additional inwards force results
in a higher pressure inside the closed surface compared to its outside. This additional
pressure is called the Laplace pressure and exists for both droplets and bubbles. We
can derive its magnitude from an energy balance using the following reasoning.

5The more general term interfacial tension describes the energy of interfaces that can also be between
two liquids, a liquid and a solid, or between a gas and a solid.
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𝜃

𝜗

Figure 5.8: Three hydrophobic capillaries or ‘straws’ with different radii are immersed in
water, illustrating how the height of the water column pushed down will be larger for thinner
capillaries (left). The liquid surface will be approximately spherical with radius𝑅 = 𝑟/sin𝜃 =

−𝑟/cos𝜗.

Because the pressure inside is higher than outside, the Laplace pressure 𝑝L can
be used to do work. An increase of the sphere radius 𝑅 by an infinitesimal amount
d𝑅 to 𝑅 + d𝑅 increases its volume V = 4

3𝜋𝑅
3 by dV = 4𝜋𝑅2d𝑅 and its surface area

𝐴 = 4𝜋𝑅2 by d𝐴 = 8𝜋𝑅. This exerts a work d𝑊 = 𝑝LdV on the sphere’s surroundings
while changing its surface energy by dU = −𝛾d𝐴. Conservation of energy 𝑝𝑉 + U
gives d𝑊 = −U , so we find

𝑝L =
2𝛾
𝑅
. (5.4)

Because the Laplace pressure can become very high for small radii 𝑅, creating very
small droplets or bubbles is exceedingly difficult.

Now consider Fig. 5.8, showing three hydrophobic straws or capillaries immersed
in water. The straw area does not like to be wet, and the larger capillaries have a
larger surface area, so why will the liquid level be lower in the thinner tubes? This
is because of the smaller ‘radius of curvature’ that the liquid surface will have inside
the capillaries.6 The right-hand side of Fig. 5.8 shows a zoom of the convex surface
associated with a hydrophobic contact angle 𝜗 ≥ 𝜋/2. The radius of curvature 𝑅 is
the radius of the approximately spherical surface. Using geometry and Eq. (5.4), the
Laplace pressure is equal to7

𝑝cap ≡ 𝑝l − 𝑝g =
2𝛾 | cos𝜗|

𝑟
. (5.5)

This pressure is usually referred to as the capillary pressure and Eq. (5.5) as the Young-
Laplace equation. It shows that the smaller the radius 𝑟 of the capillary, the higher

6The opposite happens in hydrophilic materials, where the water level creeps up more in smaller
capillaries.

7An absolute value is taken as we defined the contact angle 𝜗 through the liquid phase so that
hydrophobic materials have 𝜃 > 𝜋/2 and cos𝜗 < 0. However, the capillary pressure is defined by Eq. (5.5)
as the pressure difference between the non-wetting phase and the wetting phase and is positive.
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Figure 5.9: By increasing the differential pressure 𝑝cap between a water reservoir on the
left of a gas-filled diffusion layer and recording the water saturation 𝑠 , a capillary pressure-
saturation curve can be generated. The largest pore (dark blue) with radius 𝑟max forms a water
channel first at the threshold 𝑝t. At higher pressures 𝑝cap the lighter-coloured pores follow,
increasing 𝑠 .

the pressure difference between the liquid and the gas that can be sustained. In
Fig. 5.8 this is hydrostatic pressure, while in Fig. 5.6 it is the frictional pressure drop
required to push the water out. The capillary pressure thus explains why the fluid
preferentially takes the path traced by the largest pores and does not enter the smaller
pores. In the next section, we will consider how to quantify this behaviour.

5.3.2 Capillary pressure-saturation curve
Instead of the well-defined cylindrical capillaries used in the experiment of Fig. 5.8,
diffusion layers typically do not consist of regular-sized capillaries, although making
such structured diffusion media is an active research area. The carbon paper that is
typically used consists of a random arrangement of approximately cylindrical fibres,
with the space in between forming a wide pore-size distribution. This distribution
can quantified using the procedure8 illustrated in Fig. 5.9.

A gas-filled diffusion layer is bordered on one side by water, which is gradually
increased in pressure. At the threshold pressure, or breakthrough pressure, 𝑝t, the first
liquid permeates through.9 By Eq. (5.5) this pressure can be related to the maximum
pore radius 𝑟max as

𝑝t =
2𝛾 | cos𝜗|
𝑟max

. (5.6)

The water saturation 𝑠 is defined as the volume fraction of the local pore volume that
is occupied by water. Before the breakthrough pressure is reached, the saturation
𝑠 = 0. With increasing liquid pressure, first the largest pores and, eventually, the

8This is called the porous diaphragm method, or restored capillary pressure method. It is not often used
because of its rather slow nature.

9For a hydrophilic material, the pressure at which gas first penetrates a water-filled porous medium is
observable by the first bubble appearing on the liquid side and is therefore referred to as the bubble point.
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smaller capillaries fill with liquid. With increasing liquid pressure, the liquid flow
rate increases, and the saturation increases. The resulting curve that can be obtained
between applied capillary pressure 𝑝cap and water saturation 𝑠 is shown on the left-
hand side of Fig. 5.9. The slope 𝜕𝑝cap/𝜕𝑠 = 𝑝t/𝜆 can be characterised in terms of the
pore-size distribution index 𝜆, so10

𝑝cap(𝑠) = 𝑝t

(
1 + 𝑠

𝜆

)
for𝑠 ≈ 0. (5.7)

Comparing with Eq. (5.5) we see that 𝑟(𝑠)
𝑟max

=
𝑝t
𝑝cap

= 1
1+ 𝑠𝜆

. This gives the smallest pore
size 𝑟 filled with liquid at a liquid saturation 𝑠. The average squared pore radius
filled with water is given by〈

𝑟2(𝑠)
𝑟2

max

〉
=

1
𝑠

∫ 𝑠

0

𝑝2
t

𝑝2
cap
𝑑𝑠 =

∫ 𝑠

0

d𝑠(
1 + 𝑠

𝜆

)2 =
𝜆

𝑠 + 𝜆 . (5.8)

A high 𝜆 gives a relatively flat 𝑝cap − 𝑠 curve that indicates a relatively homogeneous
pore size distribution with fairly equal pore sizes. A small 𝜆 gives a relatively steep
𝑝cap − 𝑠 curve, indicating a wide pore size distribution with many widely differing
pore radii.

5.3.3 Darcy’s law
A fluid flowing through a porous medium will incur a frictional pressure gradient
similar to flow through a tube. For steady laminar flow through a cylindrical pore,
the Hagen-Poiseuille equation gives:11

−
d𝑝l

d𝑥∥
=

8𝜇𝑢pore

𝑟2 . (5.9)

Here, 𝑥∥ is a coordinate parallel to the flow. The pressure gradient is linear in the
average velocity 𝑢pore and scales inversely proportional to the square of the channel
radius 𝑟.

As we have done in section 3.1, we may approximate a porous medium by a bundle
of capillaries. Equation (3.7) gives the superficial velocity through a porous medium
of porosity 𝜖 as𝑈 = 𝜖

𝑢pore
𝜏 . Here, the tortuosity defined in Eq. (3.2) 𝜏 = 𝜕𝑥∥/𝜕𝑥 gives

the length of the pores compared to the shortest length.

10One of the simplest 𝑝cap − 𝑠 models that approximately works well for many materials is the Brooks-
Corey relation 𝑝cap = 𝑝t (1 − 𝑠)−1/𝜆. For 𝑠 ≈ 0 this can be linearised to give Eq. (5.7). Another popular
relation, the Udell Leverett-J function 𝐽(𝑠) = 𝑝cap/𝑝t = 1.417𝑠 − 2.21𝑠2 + 1.263𝑠3, describes certain rock
types. Linearising near 𝑠 = 0 shows this corresponds to 𝜆 = 1/1.417 = 0.706.

11The steady incompressible Navier-Stokes equation 0 = 𝜈∇2𝒖 − ∇𝑝 for a uni-axial flow velocity 𝑢(r)
in the 𝑥-direction as a function of the radial coordinate r becomes 0 =

𝜇
r

d
dr

(
rd𝑢

dr

)
− d𝑝

d𝑥 . With boundary

condition 𝑢(𝑟) = 0 this is solved by the parabolic profile 𝑢(r) = 2 ⟨𝑢⟩
(
1 − (r/𝑟)2

)
with the average velocity

𝑢pore ≡ 1
𝜋𝑟2

∫
𝑢(r)2𝜋r𝑑r given by Eq. (5.9).
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Therefore, absolute permeability or single-phase permeability of the porous medium
reads

𝐾 ≡ 𝜇𝑈l

d𝑝/d𝑥 =
𝜆

1 + 𝜆
𝜖

8𝜏2 𝑟
2
max (5.10)

where we used Eq. (5.8) (with 𝑠 = 1, for all pores filed with liquid) to replace 𝑟2 with
an average value. This will only give a rough numerical approximation,12 but it does
show the expected dependencies with pore size, porosity, and tortuosity.

The linear dependence of superficial velocity and pressure gradient, with a pro-
portionality constant 𝐾/𝜇, is called Darcy’s law.

5.3.4 Relative permeability
For a porous medium consisting of cylindrical channels, Eq. (3.13) gave 𝜏 ≈ 𝜖−1 so
the permeability becomes proportional to 𝜖2. If a static gas phase is also present
besides the flowing liquid phase, the available pore fraction for the liquid becomes
𝜖𝑠 . Furthermore, for 𝜆 ≫ 1, another factor 𝑠 is added to give

−d𝑝l

d𝑥 =
𝜇𝑈l

𝐾𝑘
, (5.11)

where the relative permeability
𝑘 = 𝑠3. (5.12)

The total permeability 𝐾𝑘 is defined by Eq. (5.11).13

5.3.5 An equation for 𝑠
The water saturation 𝑠 will be highest at the catalyst layer at 𝑥 = 0, where water is
produced, and lowest at the gas channel at 𝑥 = 𝐿, where water is removed. Therefore,
following Eq. (5.7), the capillary pressure will be highest near the catalyst layer. This
pushes water towards the flow channel, in what is called capillary action. To reduce
the exposure of the hydrophobic material to water, a flow is established to move the
water out.

Taking the spatial derivative of Eq. (5.5), assuming d𝑝g/d𝑥 ≪ d𝑝l/d𝑥, and in-
serting Eqs. (5.7) and (5.11) gives the following differential equation for the water
saturation

d𝑠
d𝑥 = −

𝜆𝜇

𝑝t𝐾

𝑈l
𝑠3 . (5.13)

12For a porous medium consisting of spheres of diameter 𝑑p, the often-used Cozeny-Karman relation

𝐾 =
d2

p𝜖
3

180(1−𝜖)3 is obtained by inserting into Eq. (5.9) the hydraulic pore radius 𝑟 = 𝜖𝑑p/2
1−𝜖 and 𝜏 = 180/32 ≈ 5.6.

13Several admittedly heuristic arguments have led to Eq. (5.12). Therefore, unsurprisingly, various other
results can be found in the literature; for example, Eq. (5.12) but with the power 3 replaced with anywhere
between 2 and 8 [17].
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This shows how the liquid saturation 𝑠 will decrease in the liquid flow direction.
The decrease will be more rapid for larger flow velocities and higher liquid viscosity,
particularly at low liquid saturations near 𝑠 = 0. A larger permeability and threshold
pressure decrease the variation in the saturation. As expected, the liquid saturation
decreases in the 𝑥-direction, away from the catalyst layer.

Assuming that all the produced water leaves in liquid form through the diffusion
layer, so neglecting water vapour and transport through the membrane, Faraday’s
law gives

𝑈l =
𝑗V𝑚
2𝐹 , (5.14)

where, at ambient conditions, V𝑚 ≈ 1.8 · 10−5 m3/mol is the molar volume of liquid
water and 𝑛 = 2 electrons are consumed per water molecule produced, according to
Eq. (5.2). Inserting into Eq. (5.13) gives

d𝑠
d (𝑥/𝐿) = −

𝑗/𝐽c
𝑠3 . (5.15)

Here the characteristic capillary current density

𝐽c =
𝑝t𝐾

𝜆𝜇𝐿
𝑛𝐹

V𝑚
≈ 𝛾 | cos𝜗|

4𝜇(1 + 𝜆)
𝜖

𝜏2
𝑛𝐹

V𝑚
𝑟max
𝐿
≈ 3 · 1010 𝑟max

𝐿
A/m2 , (5.16)

where in the second expression, we used Eqs. (5.6) and (5.10). In the final expression
we used Vm = 1.8 · 10−5 m3/mol and 𝜇 = 4.7 · 10−3 Pas for water at 60 ◦C and 1.2
bar, 𝛾 | cos𝜗| = 0.05 Pas, 𝑛 = 4, and 𝜖

(1+𝜆)𝜏2 ≈ 0.05. A typical diffusion layer pore
size 𝑟max ≈ 10 µm and thickness 𝐿 ≈ 300 µm gives 𝐿/𝑟max ≈ 30, so that along its
width only a few dozen of the largest pore size fit into the diffusion layer. This makes
𝐽c ≈ 109 A/m2 and at typical fuel cell current densities 𝑗 = (1 − 3) · 104 A/m2 we see
that 𝑗 ≪ 𝐽c.

To determine a boundary condition for Eq. (5.15), we consider the water droplets
illustrated in Fig. (5.8) on the surface of the diffusion layer. If these are sufficiently
larger, their capillary pressure is small so that Eq. (5.7) gives at the channel-diffusion
layer interface14

𝑠(𝑥 = 𝐿) = 0. (5.17)

5.3.6 A solution for 𝑠
Solving Eq (5.13) with boundary condition (5.17) gives

𝑠(𝑥) =
(

4𝑗
𝐽c

(
1 − 𝑥

𝐿

))1/4
, for 𝑗 ≪ 𝐽c. (5.18)

14We assume the droplet radius 𝑟𝑑 ≫ 𝑟max so their Laplace pressure 𝑝cap = 2𝛾/𝑟𝑑 ≪ 𝑝t will be negligible.
Neglecting any frictional or kinetic pressure drops between inside and outside, we can assume the same
holds just inside the porous medium.
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Figure 5.10: The water saturation 𝑠(𝑥) =
(

4𝑗
𝐽c

(
1 − 𝑥

𝐿

) )1/4
of Eq. (5.18) for various 𝑗/𝐽c. The

boundary condition 𝑠(𝑥 = 𝐿) = 0 near the gas channel is associated with a large pressure drop
due to the low permeability 𝑘 = 𝑠3. To maintain a low liquid saturation 𝑠 < 0.25 everywhere
requires 𝑗/𝐽c ≲ 0.75.

This solution is shown in Fig. 5.10 for various values of 𝑗/𝐽c. A large decrease in
the water saturation can be seen close to the gas channel at 𝑥 = 𝐿. The low water
saturation leads to a lower permeability that induces a large frictional pressure drop.
Therefore, the saturation strongly decreases towards the gas channel.

The main disadvantage of a high saturation is that oxygen transport will be
hindered. Since the oxygen solubility and diffusivity are low in water, the sustainable
diffusion flux of oxygen through water is orders of magnitude lower. In the next
section, we will consider the effect of water on the diffusion of oxygen in the diffusion
layer.

5.3.7 Effective oxygen diffusivity
Without water present, an oxygen diffusion flux 𝑁 = 𝐷(𝑐𝐿 − 𝑐0)/𝐿 can be sustained
for an oxygen concentration difference 𝑐𝐿 − 𝑐0 over the diffusion layer of thickness
𝐿. Here 𝐷 ≈ 𝜖1+B𝐷m, as given by Eq. (3.14), is lower than the molecular diffusion
coefficient 𝐷m due to porosity 𝜖 and tortuosity 𝜏. When the oxygen concentration
vanishes in the catalyst layer, a limiting current density arises. Without any water
present, it reads

𝑗lim0 =
4𝐹𝐷𝑐𝐿
𝐿

, (5.19)

where Eq. (5.2) gives that 𝑛 = 4 electrons are converted per oxygen molecule. With a
typical oxygen concentration 𝑐𝐿 ≈ 10 mol/m3 in air at typical elevated temperature
and pressure, 𝐷 ≈ 10−5 m2/s, and 𝐿 = 300 µm, this gives about 13 A/m2, several
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times higher than typical fuel cell current densities.
The increase in water saturation 𝑠 further decreases the volume fraction 1 − 𝑠 of

the pores available for gas diffusion, and increases the tortuosity. We will model
this with a modified diffusivity 𝐷 (1 − 𝑠)𝑚 , similar to the Bruggeman correction of
Eq. (3.14), with a power 𝑚 depending on the geometry of the medium. This gives for
the molar oxygen flux 𝑁 = 𝐷 (1 − 𝑠)𝑚 d𝑐

d𝑥 . Integrating over the entire diffusion layer
gives 𝑗 = 4𝐹𝐷eff

𝑐𝐿−𝑐0
𝐿 , where

𝐷eff
𝐷

=
1
𝐿

∫ 𝐿

0
(1 − 𝑠)−𝑚 𝑑𝑥. (5.20)

Inserting Eq. (5.18) does not give simple expressions for 𝐷eff. Instead, we provide the
following approximation15

𝐷eff
𝐷
≈

(
1 − (1.6𝑗/𝐽c)1/4

)−𝑚
. (5.21)

We have 𝑗lim =
𝐷eff
𝐷 𝑗lim0 where 𝐷eff by Eq. (5.21) depends on 𝑗lim/𝐽c. Experiments

show that 𝑚 varies over a wide range between different materials. Taking 𝑚 = 4 we
can solve this to give

𝑗lim =
𝑗lim0(

1 +
(

1.6𝑗lim0
𝐽c

)1/4
)4 . (5.22)

This solution is plotted in Fig. 5.11.
As estimated at the beginning of this section, typical ‘dry’ limiting current den-

sities 𝑗lim0 are only several times higher the current densities normally used in fuel
cells. Therefore, to avoid significant concentration overpotentials, the presence of
water cannot lower the limiting current density by much.

To avoid the limiting current density dropping below, say, 50 % of its ‘dry’ value
𝑗lim0 ∼ 105 A/m2, according to Eq. (5.22) 𝐽c ≳ 103 𝑗lim0 ∼ 108 A/m2 is required.
Equation (5.16) then gives 𝐿/𝑟max ≲ 300. Therefore, avoiding a too-low limiting
current density requires a diffusion layer that is less than a few hundred times its
maximum pore radius. With typical values 𝑟max ∼ 10 µm and 𝐿 = 300 µm, this is
taken into consideration in the design of modern diffusion layers.

5.4 Flooded agglomerate model

5.4.1 Ohmic and diffusion limitations
Figure 5.13 shows an image of a catalyst particle in a PEM fuel cell cathode. It con-
tains fine carbon particles to conduct electrons, ionomer to conduct ions, and plat-

15This is obtained by expanding Eq. (5.18) to first order in (4𝑗 (1 − 𝑥/𝐿) /𝐽c)1/4 to write (1 − 𝑠)−𝑚 ≈
1 + 𝑚 (4𝑗 (1 − 𝑥/𝐿) /𝐽c)1/4 and integrating to give 𝐷eff

𝐷
≈ 1 + 4𝑚

5 (4𝑗/𝐽c)
1/4. With 4

5 41/4 ≈ 1.61/4 this is the
first-order approximation of Eq. (5.21).
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Figure 5.11: The solution 𝑗lim =
𝑗lim0(

1+
( 1.6𝑗lim0
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)4
)4 of Eq. (5.22) plotted as a function of 𝑗lim0/𝐽c.
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Figure 5.12: A schematic of the cathode catalyst layer structure and profiles of the overpotential
𝜂 and oxygen concentration 𝐶. Note: this is not to scale; the catalyst layer is typically much
thinner than the diffusion layer. The flooded agglomerate model consists of agglomerates of
several carbon-supported catalyst particles flooded by water from the reaction. The dissolved
oxygen concentration at the agglomerate surface 𝐶𝑅, see Fig. 5.13, is in equilibrium with the
approximately constant gas phase concentration. Near 𝑥 = 0, the reaction is fastest because
the overpotential 𝜂 is highest.
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V 𝐴s

Figure 5.13: A schematic illustration of an agglomerate of PEM fuel cell carbon-supported
catalyst particles with volume V and surface area 𝐴s. The black catalyst particles are sur-
rounded by a carbon/ionomer/binder mixture. The dissolved oxygen concentration decreases
from its value 𝐶𝑅 at the particle surface towards the interior of the particle, due to the oxygen
reduction reaction.

inum nanometre-sized particles to increase the reactivity. These carbon-supported
particles are typically a few to tens of nanometres in size, but they can agglomerate
to agglomerates of a few or many particles in size extending to tens to hundreds
of nanometres. The water produced in the reaction of Eq. (5.2) floods the pores of
these carbon particles and often the inter-particle space within an agglomerate. The
carbon particles will be flooded with the water produced in the reaction, hence the
term flooded agglomerate model. As a consequence, for oxygen to reach the catalyst
particles inside these agglomerates, it first has to dissolve and then diffuse inwards
while reacting.

Both the concentration and the diffusivity of oxygen drop dramatically when
dissolved in water. Therefore, the intra-agglomerate pores ideally remain dry to
allow oxygen to diffuse towards the agglomerates in the gas phase. Flooding of
the catalyst layer, when the inter-agglomerate space also fills with water, makes it
impossible for the oxygen to reach much of the catalyst layer. On the other hand,
flooding of the agglomerates themselves is hard to avoid and less of an issue because
of their much smaller size. Due to the good hydration of the ionomer and their
small size, ohmic limitations inside the agglomerates can be neglected. However,
limitations of oxygen mass transfer may have to be considered inside the water-filled
agglomerate.

On the other hand, ohmic limitations may arise over the catalyst layer’s thickness.
This leads to the profiles shown in Fig. 5.12 where we consider variation in the
overpotential 𝜂 and the average oxygen concentration ⟨𝐶⟩ inside the agglomerates,
but the concentration 𝐶𝑅 at the surface is assumed to be constant throughout. The
reason is that this surface is in equilibrium with the oxygen concentration in the gas
phase, which will be constant throughout the catalyst layer.16

16By Henry’s law, the oxygen concentration in the liquid phase at the interface with the gas is given by
𝐶𝑅 = 𝐻𝑝O2 with 𝑝O2 the partial pressure of oxygen in the gas. Here 𝐻 is Henry’s constant.
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5.4.2 Model equations
To describe the activation overpotential, we consider Tafel kinetics, first-order in the
oxygen concentration. We start from the porous electrode equation Eq. (3.62), which
we modify to:

e𝜂/𝑏 = Ea
𝜅
𝑎 𝑗∗

𝜂′′. (5.23)

Here, Ea = ⟨𝐶⟩/𝐶𝑅 is the agglomerate effectiveness factor. Similar to the approxima-
tion E = 1

1+M introduced in section 3.4.4, in Appendix 5.A we show

Ea ≈
1√

1 +M2
a
, (5.24)

in terms of the agglomerate Thiele modulus Ma. In Eq. (3.56) we obtained the porous-
electrode expression M2 =

𝐽∗
𝐽𝐷

e𝜂0/𝑏 , where 𝐽𝐷 ≡ 𝑛𝐹𝐷𝑐0/𝐿. Analogously, we will use
here

M2
a = M2e𝜂/𝑏 ,where M2 =

𝑗∗
𝐽𝐷
, and 𝐽𝐷 ≡ 𝑛𝐹𝐷𝑎s𝐶0 (5.25)

where the effective medium diffusivity 𝐷 now refers to that inside the agglomerate
particle instead of the porous electrode as a whole. Other differences with the porous
electrode expressions that we obtained before are:

1. Instead of the overpotential 𝜂0 at the ‘entrance’ of the electrode, at 𝑥 = 0 near
the membrane, we use the overpotential 𝜂 at the ‘entrance’ of the agglomerate.
Due to ohmic limitations, this overpotential can vary throughout the catalyst
layer.

2. Instead of the total exchange current density 𝐽∗ = 𝑎𝐿𝑗∗ of the entire electrode,
the exchange current density 𝑗∗ of a single agglomerate particle is used.17

3. Instead of the effective-medium electrode thickness 𝐿, we use as a length-scale
1/𝑎s, where 𝑎s is the volumetric surface area of a single agglomerate. This is
shown to be a sensible replacement in Appendix 5.A.1. For a sphere of radius
𝑅 this would replace 𝐿 with 1/𝑎s =

4
3𝜋𝑅

3/4𝜋𝑅2 = 𝑅/3.

Inserting Eqs. (5.24) and (5.25) into Eq. (5.23) gives

𝜂′′ ≈ 𝑎 𝑗∗
𝜅

e𝜂/𝑏√
1 +M2e𝜂/𝑏

. (5.26)

17Here 𝑎 is now the external area of the agglomerates per total unit volume of the catalyst layer.
Considering an agglomerate to be porous, we may further write 𝑗∗ in terms of the intrinsic exchange
current density of a platinum particle times the ratio between the combined platinum surface area,
divided by the agglomerate area.
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5.4.3 Overpotential
Equation (5.26) can be solved approximately under the assumption M2e𝜂1/𝑏 ≪ 1, so
the agglomerate effectiveness factor Ea(𝑥 = 𝐿) ≈ 1. This will be the case at sufficiently
strong ohmic limitations, such that the reaction rate at 𝑥 = 𝐿 is negligible. We can
use a similar solution method as in sections 3.4.3 and 4.4 to give:18

𝜂0 = 𝑏ln
(

𝑗2

2𝑏𝜅𝑎 𝑗∗

(
1 + 𝑗2

8𝑏𝜅𝑎𝐽𝐷

))
≈


2𝑏ln

(
𝑗√

2𝑏𝜅𝑎 𝑗∗

) (
𝑗2

8𝑏𝜅𝑎𝐽𝐷 ≪ 1
)

4𝑏 ln

(
𝑗√

4𝑏𝜅𝑎
√
𝑗∗𝐽𝐷

) (
𝑗2

8𝑏𝜅𝑎𝐽𝐷 ≫ 1
) (5.27)

The agglomerate effectiveness factor at 𝑥 = 0 reads

Ea0 =
1√

1 +M2e𝜂0/𝑏
=

1√
1 + 𝑗2

2𝑏𝜅𝑎𝐽𝐷

(
1 + 𝑗2

8𝑏𝜅𝑎𝐽𝐷

) , (5.28)

so that the top and bottom case correspond to Ea0 ≈ 1 and Ea0 ≪ 1, respectively.
In the top case, the agglomerates are used effectively (Ea0 ≈ 1), and we obtain

the same result as in section 3.4.3. In this case, ohmic limitations over the catalyst
layer thickness lead to a doubling in the Tafel slope to 2𝑏 and an apparent exchange
current density

√
2𝑏𝜅𝑎 𝑗∗.

In the bottom case, besides these ohmic limitations, additional internal diffusion
limitations lead to a further doubling or quadrupling in the Tafel slope to 4𝑏. [21]
The apparent exchange current density is replaced by a geometric average of a re-
sistive current density 4𝑏𝜅𝑎 and a geometrical average of a diffusive current density
𝐽𝐷 =

𝑎2
s
𝑎 𝑛𝐹𝐷𝐶𝑅 and 𝑗∗. Because of the very weak dependence on 𝑗∗ catalyst improve-

ments, they only very weakly improve performance in this undesirable regime. The
predicted doubling and quadrupling of the Tafel slope is compared to experimental
data in Figure 5.14.
The quadrupled Tafel slope regime is obviously not a desirable operational regime
for a fuel cell. To avoid this, under all operating conditions the Thiele moduli must
remain small.

5.4.4 Example calculation
Using the following typical values for a PEM fuel cell [14]: a diffusivity 𝐷 = 5 · 10−9

m2/s and solubility𝐶𝑅 = 7.6 mol/m3 of oxygen in water at elevated pressure, 𝑏 = 0.05

18The chain rule gives d
d𝑥 =

d𝜂
d𝑥

d
d𝜂 so that 𝜂′′ = 𝜂′ d𝜂′

d𝜂 = 1
2

d𝜂′2
d𝜂 . The integral

∫ e𝜂/𝑏 𝑑𝜂√
1+M2𝑒𝜂/𝑏

= 2𝑏
√

1+M2e𝜂/𝑏
M2

so integrating from 𝜂0 to 𝜂1, assuming M2e𝜂1/𝑏 ≪ 1, gives 𝜂′20 ≈
4𝑎 𝑗∗𝑏
𝜅

√
1+M2e𝜂0/𝑏−1

M2 . The boundary
condition (3.B.101) gives |𝜂′0 | = 𝑗𝐿/𝜅, resulting in Eq. (5.27).
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Figure 5.14: Experimental data for a phosphoric acid fuel cell [18] with a catalyst loading of
0.63 mg Pt cm−2 and catalyst layer thickness of 200 𝜇m on Vulcan XC-72R containing 50
wt% PTFE and in 105 wt% H3PO4. The potential as a function of current density seems to
show a doubling and then a quadrupling in Tafel slope per decade, from 110 mV, to 220 mV,
to 440 mV [21].

V, 𝑛 = 4, and 𝑎 𝑗∗ = 4 · 104 A/m3, we find for an agglomerate radius of 𝑅= 10−7 m
that M2 =

𝑎 𝑗∗𝑅
2

9𝑛𝐹𝐷𝐶𝑅 ∼ 3 · 10−10. To reach a Thiele modulus squared M2
a = M2e𝜂/𝑏 of

the order unity requires in this case 𝜂 ≈ 22𝑏 ≈ 1 V. Such high overpotentials will
never be used, since there will be no useful potential left in this case. Therefore,
modern catalyst layers in which agglomerates are of the order of 100 nm in radius or
smaller should be free of diffusion limitations and should not show the Tafel slope
quadrupling of Figure 5.14.

5.5 Summary
• The capillary pressure inside a porous medium is given by the Young-Laplace

equation as 𝑝cap = 𝑝l − 𝑝g =
2𝛾 | cos𝜗|

𝑟 =
2𝛾 | cos𝜗|
𝑟max

(
1 + 1−𝑠

𝜆

)
(5.5). The second

equation linearises its dependence on saturation 𝑠 ≈ 1. Combined with Darcy’s
equation −d𝑝l

d𝑥 =
𝜇𝑈l
𝐾𝑘

(5.11) and a relative permeability 𝑘 = 𝑠3 this gives d𝑠
d𝑥 =

− 𝜆𝜇
𝑝t𝐾

𝑈l
𝑠3 = − 𝑗/𝐽c

𝐿𝑠3 (5.13), which describes how 𝑠 decreases away from the catalyst
layer.

• If the increase in 𝑠 decreases the local effective gas diffusivity from 𝐷 to
𝐷 (1 − 𝑠)4, the limiting current density is decreased from 𝑗lim0 to 𝑗lim0(

1+
( 1.6𝑗lim0

𝐽c

)1/4)4

(5.22).

• Assuming ohmic limitations over the thickness of the catalyst layer, where
the gas phase ensures high reactant diffusivity, and potential diffusion lim-
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itations inside the flooded agglomerates, which are small enough to avoid
ohmic limitations, we obtained an analytical expression for the overpotential
𝜂0 = 𝑏ln

(
𝑗2

2𝑏𝜅𝑎 𝑗∗

(
1 + 𝑗2

8𝑏𝜅𝑎𝐽𝐷

))
(5.27). The Tafel slope doubled by the ohmic

limitations gets doubled again in case of diffusion limitations inside the ag-
glomerates.

Exercise 5.1
A limiting current arises in the cathode of a PEM fuel cell when the oxygen concen-
tration reaches zero at the catalyst layer. Assume that the only significant transport
resistance is in the diffusion layer of thickness 𝐿, where oxygen has to diffuse through
air and water vapour with an effective diffusivity, 𝐷.
a. Give an expression for the limiting current associated with this diffusion layer in

terms of the oxygen concentration c at the gas channel.
b. Give a numerical value for this current density when𝐷 = 10−5 m2/s, 𝐿 = 0.3 mm,

and the oxygen concentration is that in air at ambient pressure, or 𝑐𝐿 = 10 mM.
(N.B. Regularly much lower limiting currents of the order of 1 A/cm2 are found.
This may be due to an unaccounted-for transfer resistance, like that associated
with the dissolution of oxygen.)

c. In case of two resistances in series, with mass transfer coefficients 𝑘1 and 𝑘2 give
an expression for the overall mass transfer coefficient (remember that the mass
transfer coefficient is the flux divided by the driving concentration difference).

d. Assume that these mass transfer resistances combine to a single transfer coefficient
given by 𝑘= 𝑁

𝑐𝐿−𝑐0
with 𝑐𝐿 the local concentration of oxygen at the catalyst layer-

diffusion layer interface and 𝑐0 the concentration at the catalyst surface where the
reaction takes place. Give an expression for the limiting current, including this
resistance and that of the diffusion layer.

Exercise 5.2
Equation (5.13) was derived neglecting the friction of the gas phase.
a. Modify Eq. (5.13) to include the effect of the gas pressure gradient.
b. The liquid pressure gradient will dominate for a very low liquid saturation 𝑠 ≈ 0,

while the gas fraction will be largest for very low values of 𝑠 . For what saturation
𝑠∗ will the gas and liquid pressure gradients be equal? Give a formula and fill in
the properties of water and air at 60 ◦C and 1.2 bar to give a numerical value.

Exercise 5.3
Consider a PEM fuel cell cathode catalyst layer with spherical platinum particles with
a radius 𝑅 at a volume fraction 𝜑.
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a. Give a formula the volumetric surface area of the catalyst.
b. If the intrinsic exchange current density of a platinum surface for the oxygen

reduction reaction is known to be 𝑗∗ = 10−1 A/m2, the nanoparticles have a
radius of 𝑅 = 2.5 nm, and are used at a volume fraction of 𝜑=10−3 give the
effective exchange current density 𝑎 𝑗∗ per unit of total catalyst layer volume.

c. If the catalyst layer has a thickness 𝐿 = 5 μm and is used effectively, given a Tafel
slope 𝑏 = 50 mV, what are the expected cathodic activation losses at 1 A/cm2?

d. What overpotential can be saved when the catalyst layer thickness is increased
tenfold and remains fully effective? Give your answer in the form of a formula.

e. If the effective ionic conductivity is 1 S/m, what will be the approximate effec-
tiveness factor when increasing the electrode thickness by a factor 10?

Exercises 5.4-5.12
Fill in the missing steps in the main text, indicated by the symbol .
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5.A Generalised Thiele modulus

5.A.1 General particle shape

The Thiele modulus squared M2 = 𝐿2𝑘
𝐷 is expressed as the ratio of the volumetric reac-

tion rate 𝑘𝐶 and a characteristic diffusion rate𝐷𝐶/𝐿2. And we found the effectiveness
factor E = tanhM

M for a planar configuration. In this section, we will generalise this
result to apply approximately to any shape. Consider a general volume,𝑉 , as shown
in Figure 5.13, which has a concentration 𝐶𝑅 at the boundary of the volume.
The diffusion-reaction conservation equation inside the particle reads

0 = 𝐷∇2𝐶 − k𝐶. (5.A.29)

The effectiveness factor is defined as the ratio of the average and maximum
reaction rates:

E ≡
1
V

∫
k𝐶 dV

k𝐶0
=
𝐷

∫
∇2𝐶 dV

k𝐶0 V
=
𝐷

∫
∇𝐶 · 𝑑𝑨
k𝐶0V

≈ 𝐷𝑎s
k

|∇𝐶 |
𝐶

����
surface

. (5.A.30)

In the second equation, we inserted Eq. (5.A.29); in the third, we applied the
divergence theorem, and in the final approximation, we assumed that ∇𝑐 is constant
over the surface of the particle and aligned with the outwards directed d𝑨. This
allowed us to replace and introduce the volumetric surface area 𝑎s = 𝐴/V .
Comparing Eq. (5.A.30) with the expression E = − 𝐿 𝑐

′/𝑐 |0
M2 for the 1D pore case, we see

that we can maintain the definition M2 = 𝐿2k
𝐷 if we replace 𝐿 by 1/𝑎s. For a pore

of radius 𝑅 and length 𝐿 of which only the sides react, we have 𝑎s = 𝜋𝑅2

𝜋𝑅2𝐿
= 1/𝐿 as

before.
With this replacement, we obtain the generalised Thiele modulus

M2 =
𝑘

𝑎s𝐷
, (5.A.31)
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Figure 5.15: The effectiveness factor E =
tanh(M)

M for a planar configuration (dark blue),
1
M

(
1

tanh (3M) −
1

3M

)
for a sphere and an approximation 1√

1+M2
showing only very small

differences using the generalised Thiele modulus of Eq. (5.A.31).

where we also inserted the reaction coefficient 𝑘 = k/𝑎s per unit external surface
area.
For a spherical particle with radius 𝑅 we have 𝑎s = 4𝜋𝑅2

4
3𝜋𝑅

3 = 3
𝑅 so that with 𝐿 = 𝑅/3

we have M2 = 𝑅2k
9𝐷 = 𝑅𝑘

3𝐷 .

5.A.2 Effectiveness factor approximation
Besides the planar case we considered previously, the reaction-diffusion equation
can also be solved exactly in, for example, a sphere. The result is for this is shown in
Figure 5.15. It can be seen that the curves are very similar. This allows us to use the
planar result E =

tanh(M)
M with a reasonable degree of accuracy, also for the case of a

sphere using the generalised Thiele modulus of Eq. (5.A.31).
Figure 5.15 also shows the approximation

E ≈ 1√
1 +M2

. (5.A.32)

This result also tends to the correct limits E ≈ 1 when M ≪ 1 and 1/M when M ≫ 1.
It can be seen that this approximation is also quite close to both the spherical and
planar results. Usually, this approximation is sufficiently accurate, especially since
the exact particle shape is often not well known.
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5.A.3 Dimensionless flooded agglomerate model
Eq. (5.23) in the dimensionless notation of Appendix 3.B reads

e�̄� = Ea
𝑗∗

𝑗𝜅
�̄�′′, (5.A.33)

and Eq. (5.26) becomes

�̄�′′ ≈ 𝑗𝜅

𝑗∗

e�̄�√
1 +M2e�̄�

. (5.A.34)

The chain rule gives d
d�̄� =

d�̄�
d�̄�

d
d�̄� so that �̄�′′ = �̄�′

d�̄�′
d�̄� = 1

2
d�̄�′2
d�̄� . The integral

∫ e�̄�𝑑�̄�√
1+M2𝑒 �̄�

=

2
√

1+M2e�̄�
M2 so that integrating from �̄�0 to �̄�1 assuming M2e�̄�1 ≪ 1 gives

�̄�
′2
0 ≈

4𝑗𝜅
𝑗∗

√
1 +M2e�̄�0 − 1

M2 . (5.A.35)

The boundary condition (3.B.101) gives �̄�′20 = 𝑗2𝜅 resulting in

�̄�0 = ln
(
𝑗𝜅 𝑗∗
2

(
1 + 𝑗𝜅 𝑗∗M

2

8

))
≈


ln

(
𝑗𝜅 𝑗∗
2

) (
𝑗𝜅 𝑗∗M2

8 ≪ 1
)
,

2 ln
(
𝑗𝜅 𝑗∗M

4

) (
𝑗𝜅 𝑗∗M2

8 ≫ 1
)
.

(5.A.36)

Inserting dimensional quantities again gives Eq. (5.27).
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Chapter 6

Electrolysers

In this chapter, we consider the modelling of electrolysers and, in particular, the effect that
gas evolution has on the vertical current distribution and the electrolyte flow. We start with
the rise of a single bubble, its relation to the gas fraction, and the impact of gas fraction on
conductivity. Next, we develop a model for the vertical gas distribution and its impact on
the current density. Finally, we consider how gas bubbles can be used to drive a circulating
electrolyte flow, which is useful for transporting heat and bubbles out of the cell.

6.1 Introduction
Throughout the twentieth century various alkaline water electrolysers have been
used to generate hydrogen, in particular near hydropower plants. While steam
methane reforming has taken over most hydrogen production, a clear comeback of
water electrolysis seems imminent.1

The term electrolyser generally refers to an electrolytic cell in which current is
used to drive a reaction. In this chapter, we will primarily focus on electrolysers
that produce, or evolve, gases.2 We will focus here on alkaline water electrolysers,
for the production of hydrogen. However, the phenomena we will model also apply
to various other types of gas-evolving electrochemical cells and devices. Figure 6.1
shows two types of electrolyser designs: the traditional one on the right is more
and more replaced by a zero-gap configuration in which there is no space between

1Other processes are most cost-effective, or even only possible, using electrolysis. An example is the
chlor-alkali process. Here, NaCl is converted in an electrochemical cell into chlorine gas, hydrogen, and
NaOH. Sodium chlorate, potassium chlorate, and several other organic compounds are also produced
through electrolysis. The electrolytic production of metals, or electrometallurgy, is perhaps most well-
known for making aluminium from alumina Al2O3 in the Hall-Héroult process.

2In many industrially relevant electrolysers, gases are evolved, which can have deleterious effects on
the process. In the production of aluminium, for example, in the anode effect, a bubble cloud covers the
anode. This increases the ohmic losses due to their insulating nature and increases the activation losses
by partially covering the electrode area.
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Figure 6.1: The left-hand figure shows an electrolyser in zero-gap configuration where perfo-
rated electrodes are positioned directly adjacent to the diaphragm to reduce ohmic losses. The
right-hand figure shows the traditional configuration with gaps between planar electrodes and
the diaphragm.

the electrodes and the diaphragm to reduce ohmic overpotentials, as shown on the
left-hand side of Fig. 6.1.

Often, a pump is used to drive a liquid flow through the cell. This is beneficial, first
and foremost, in transporting away the heat generated in the reaction. Sometimes, the
natural lift induced by the bubbles generates this liquid flow.3 In section 6.5, we will
consider how to model this. However, first we will consider how to predict the average
gas fraction in electrolysers, not through the use of computational fluid dynamics as
in Figure 6.2, but through simplified one-dimensional analytical modelling.

6.2 A current distribution model
So far, we have only considered one-dimensional models with a spatial coordinate in
the direction of the current. Here, we will consider variation in the direction normal
to the current, to model the gas fraction as a function of height. In the next chapter
on flow batteries, we will develop a quasi-two-dimensional model that allows for the
description of variations in the direction parallel to the current and the flow.

3This is, for example, typically the case in chlor-alkali electrolysers where liquid flow is essential to
improve mass transport. Also, a few alkaline water electrolysers that operate a near atmospheric pressure
make use of this principle.
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Figure 6.2: A Nickel-plated perforated plate electrode of roughly 2 m2 being lifted into a
NEL alkaline water electrolyser stack (left, used with permission from Lhyfe). A 2-3 mm gap
separates the diaphragm from the electrodes. There is a larger space behind the electrodes.
About 230 cells are stacked in series to make up a roughly 10 metre long electrolyser. A pump is
used to flow liquid through the cell with a small velocity of𝑊l ≈ 0.3 mm/s. This design is made
for a relatively low current density of 750-2000 A/m2. On the right is a 2D mixture-model
simulation of the gas fraction at 𝑗 = 104 A/cm2 in the first few millimetres. The electrode,
diaphragm, and gap thickness are all 0.5 mm. We used the COMSOL Multiphysics® software
to perform the modelling [8]. Simulations by W.L. v.d. Does.

6.2.1 Cell model
We write the cell model of Eq. (1.36), similar to Eq. (4.7) as

𝑉cell ≈ 𝑉eq −
(
𝜂 + 𝑗𝑙

𝜅
+ 𝑗𝑙eff

𝜅m

)
, (6.1)

where 𝜂 is the sum of the combined anode and cathode activation overpotentials.4
Here, 𝑙 and 𝜅 are the thickness and effective conductivity of the bubble-filled gap
under consideration. The final term in Eq. (6.1) gives additional ohmic losses, for
example in the diapgraghm or a gas-free electrolyte layer, in terms of an equivalent
thickness 𝑙eff of a layer with conductivity 𝜅m.5

We recall that electrolytic cells have𝑉cell < 0, so the various voltage losses increase
the cell potential magnitude. This is different from the galvanic batteries and fuel
cells considered in the previous sections.

We will use term 𝑗𝑙/𝜅 in Eq. (1.35) to describe the electrolyte ohmic drop over the
‘gaps’ between the electrode and diaphragm, or the space behind the electrodes in a

4For planar electrodes 𝜂 = 𝜂a − 𝜂c, where 𝜂a > 0 and 𝜂c < 0. Ohmic losses in cables or connections that
only depend on the total current may also be added here.

5For example, using Eq. (3.12), a diaphragm with thickness 𝑙d, porosity 𝜖, and tortuosity 𝜏 gives an
ohmic drop 𝑗𝑙eff/𝜅m = 𝑗𝑙d𝜏

2/𝜖𝜅m so 𝑙eff = 𝑙d𝜏
2/𝜖.
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Figure 6.3: Experimental data from various sources on the relative effective conductivity𝜅/𝜅m
of spherical packings of insulating spheres, emulsions (Meredith), and foams (Clark) [24].
A comparison is shown with the relations, Eq. (6.2), of Maxwell

(
1−𝜀

1+𝜀/2

)
and Bruggeman(

(1 − 𝜀)1+B
)

for B = 1/2.

zero-gap configuration, see Fig. 6.2. The rest of the ohmic drop, including that in the
diaphragm, is included in the final term 𝑗𝑙eff/𝜅m.

The space we consider will horizontally be filled homogeneously with bubbles at
a volumetric gas fraction 𝜀. Similar to the solid material in a porous electrode, the
presence of gas will reduce the effective conductivity from its molecular value 𝜅m.
Analogous to Eq. (3.25), we write6

𝜅
𝜅m

=

{
(1 − 𝜀)1+B Bruggeman,

1−𝜀
1+𝜀/2 . Maxwell

(6.2)

We have previously considered Bruggeman’s relation to describe polydisperse
spherical particles using B = 1/2. The second expression7 is often used to model the
thermal conductivity of porous media. As shown in Fig. 6.3, both expressions give
similar results8 and compare reasonably well with experiments.

6Mind you that in a porous electrode the porosity 𝜖 denotes the volume fraction available for the
electrolyte, while in the presence of a gas fraction 𝜀 this is 1 − 𝜀.

7It is named after James Clerk Maxwell and derived for a dilute random distribution of spherical
particles. It has analogues for the refractive index: the Lorentz-Lorenz equation named after Hendrik
Antoon Lorentz and Ludvig Lorenz; and permittivity: the Clausius-Mossotti relation and the mixing
formula derived by Maxwell Garnett, whose father named him after his friend J.C. Maxwell.

8At low gas fractions, their predictions overlap for B = 1/2, as they have the same first-order Taylor
expansion 1 − 3𝜀/2. At high gas fractions nearing 1, both results tend to 0.
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6.2.2 The bubble rise velocity
Bubbles coming from electrodes tend to be small, typically of the order of 0.1 mm.9
Due to surface tension, such small bubbles are approximately spherical. Buoyancy
will cause an upwards slip velocity 𝑤s, defined as the difference between the gas
bubble velocity 𝑤g and the liquid velocity

𝑤s ≡ 𝑤g − 𝑤l. (6.3)

We will use a 𝑤 to denote velocity components in the vertical 𝑧-direction, in keeping
with the fluid dynamics notation to write the velocity vector 𝒖 = 𝑢 �̂� + 𝑣�̂� + 𝑤 �̂�.
Superficial velocities will be denoted by capitals as before, so the vertical superficial
gas velocity𝑊g = 𝑤g𝜀 and the liquid superficial velocity𝑊l = (1 − 𝜀)𝑤l.

For small enough bubbles, the Reynolds number Re ≡ 𝜌𝑤s(2𝑅)
𝜇 ≲1, and we can use

the Stokes drag force expression of Eq. (2.C.71):10

𝐹𝐷 = 6𝜋𝜇𝑅𝑤s , (6.4)

for the drag force magnitude, with 𝜇 the dynamic viscosity of the liquid. The buoy-
ancy force 4𝜋𝑅3

3 𝜌𝑔 is proportional to the liquid density 𝜌. Neglecting the gravitational
force on the bubbles, equating these forces, we find for the Stokes rise velocity

𝑤S =
2𝑔𝑅2

9𝜈 , (6.5)

where 𝜈 = 𝜇/𝜌 is the liquid kinematic viscosity.
Inserting, for example, 2𝑅 = 0.1 mm,11 𝜈 = 10−6 m2/s, and 𝑔 = 9.8 m/s2 gives

a slip velocity of 𝑤S ≈ 5 mm/s. This corresponds to a Reynolds number of 0.5, for
which the Stokes drag force expression of Eq. (6.4) can still be used to a reasonable
approximation.

6.3 One-dimensional model
The general conservation equation (2.1) for the volume of gas becomes in steady-state
∇ ·𝑼g or in two dimensions

𝜕𝑈g

𝜕𝑥
+

𝜕𝑊g

𝜕𝑧
= 0, (6.6)

9This depends on the type of electrolyte, electrode, potential, etc. and is, of course, a distribution rather
than a single size.

10This approximates bubbles as rigid particles, neglecting potential internal fluid circulation. In the
presence of surfactants, this is usually a good approximation.

11A very rough idea of the bubble release diameter on a horizontal electrode can be obtained from a
force balance between the attractive surface tension force and the buoyancy force away from the electrode,
see Eq. (6.A.29). However, because this is usually a too strong oversimplification, we only include this
analysis for the interested reader in appendix 6.A.
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Figure 6.4: The configuration, dimensions, and velocities used in the analysis of the present
section. The gas fraction is averaged over the horizontal direction. The dashed box gives the
control volume used in Eq. (6.8).

where the volumetric gas flux, or superficial gas velocity components in the horizontal
𝑥 and vertical 𝑧-directions, read𝑈g = 𝜀𝑢g and𝑊g = 𝜀𝑤g.

As illustrated in Fig. 6.4, for a small enough distance between the electrode and
the diaphragm and above a certain height, the gas fraction variation in the horizontal
direction may become negligible compared to that in the vertical direction. Here, we
will develop a one-dimensional model that can describe the gas fraction as a function
of height.

We integrate Eq. (6.6) over the dashed box in Fig. 6.4 from 𝑥 = 0 at the electrode
to 𝑥 = 𝑙 at the diaphragm, and divide by 𝑙 to give the 𝑥-averaged equation12

d𝑊g

d𝑧 =
𝑗Vm

𝑛𝐹𝑙
. (6.7)

Here, we re-use the symbol 𝑊g(𝑧) = 1
𝑙

∫ −𝑙
0 𝑊g(𝑥, 𝑧)d𝑥 for the 𝑥-averaged superficial

vertical gas velocity, which hopefully does not lead to confusion. The right-hand side
gives the volumetric gas flow rate, 𝑈g, at which the gas enters the domain, divided
by 𝑙. Here Vm is the molar volume of the gas. For an ideal gas Vm = R𝑇/𝑝 is equal to
30 l/mol at 85 ◦C and 1 bar.

12In case an an additional space of thickness 𝑙b exists behind the electrode, for example in case of a
zero-gap or almost zero-gap configuration, we may replace here 𝑙 with 𝑙+ 𝑙b. In case the bubbles distribute
homogeneously horizontally, the analysis will remain the same otherwise.
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Assuming 𝑤s ≡ 𝑤g − 𝑤l =
𝑤S
1−𝜀 ,13 we have

𝑊g =
(
𝑊g +𝑊l + 𝑤S

)
𝜀, (6.8)

where𝑊l = 𝑤l (1 − 𝜀) is the volumetric liquid flux or superficial liquid velocity, so

𝜀 =
𝑊g

𝑤S +𝑊l +𝑊g/𝜀max
. (6.9)

Here 𝜀max = 1, but we will allow different values to be able to describe a maximum
gas fraction as𝑊g →∞.14

Equation (6.9) can be solved for𝑊g to give

𝑊g =
𝜀

1 − 𝜀/𝜀max
(𝑊l + 𝑤S) (6.10)

Taking the derivative with respect to 𝑧, neglecting the dependence15 of 𝑤S on 𝑧
gives, with Eq. (6.7):

d
d𝑧

(
𝜀

1 − 𝜀/𝜀max

)
=

d𝑊g/d𝑧
𝑊l + 𝑤S

. (6.11)

If we know the current distribution 𝑗 as a function of height or gas fraction, we can
solve this equation for the gas fraction. This will be the goal of the next section.

6.4 Vertical gas fraction and current distributions

6.4.1 Constant current density
we take 𝑧 = 0 to to be at the bottom of the electrode and we assume that no gas exists
below the electrode. If the current density is constant and we use 𝑊g(𝑧 = 0) = 0,
Eq. (6.7) gives 𝑊g =

d𝑊g
d𝑧 𝑧 with d𝑊g

d𝑧 given by Eq. (6.7). Inserting this into Eq. (6.9)
gives

𝜀
𝜀max

=
𝑧

𝑧c + 𝑧
, (6.12)

where, with 𝑗0 ≡ 𝑗(𝑧 = 0):

𝑧c = 𝜀max
𝑤S +𝑊l

𝑑𝑊g/d𝑧
��
𝑧=0

= 𝜀max𝑙
𝑤S +𝑊l
𝑗0Vm/𝑛𝐹

. (6.13)

13The lower effective mixture density and ‘hindrance’ between bubbles reduce the single-bubble rise
velocity at higher gas fractions. However, measurements with rising bubbles show that with increasing
gas fraction they mostly speed up, due to clustering effects. We model this very crudely by dividing the
Stokes rise velocity by 1 − 𝜀.

14The experiments reported in Ref. [7] are described well with 𝑤S = 0 and 𝜀max = 0.7, close to the
maximum packing fraction of spheres.

15By conservation of liquid volume, the superficial liquid velocity𝑊l does not depend on 𝑧.
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Figure 6.5: The gas fraction 𝜀
𝜀max

= 𝑧
𝑧c+𝑧 as a function of the dimensionless height 𝑧/𝑧c as

given by Eq. (6.12) (solid blue line) and its running average ⟨𝜀⟩ = 1
𝑧

∫
𝜀d𝑧 (solid black line)

and its approximation as given by Eq. (6.14).

To derive Eq. (6.12) we considered a constant current density. However, anticipating
a variable current density in the next section, we defined 𝑧c in this more general way.

For 𝑧 ≪ 𝑧c, Eq. (6.12) gives 𝜀
𝜀max
≈ 𝑧

𝑧c
, from which we see that 𝑧c is a characteristic

length-scale associated with the initial increase of the gas fraction with height. In
case of a constant current density, Eq. (6.12) shows that 𝑧c gives the height at which
the gas fraction has increased to half its maximum value. A higher current density
or lower gap width 𝑙 increases the volumetric gas flux and thus decreases 𝑧c. The
higher the superficial liquid velocity 𝑊l or the bubble slip velocity 𝑤s, the more gas
can be transported away, and the smaller 𝑧c will be. When 𝑧/𝑧c is no longer small, the
gas fraction will increase sub-linearly and will asymptotically approach its maximum
value, see Fig. 6.5.

We are also interested in the average gas fraction ⟨𝜀⟩ = 1
ℎ

∫ ℎ

0 𝜀d𝑧, which gives

⟨𝜀⟩
𝜀max

= 1 − ln (1 + ℎ/𝑧c)
ℎ/𝑧c

≈ ℎ/2𝑧c
1 + ℎ/2𝑧c

. (6.14)

In Fig. 6.5, the approximation on the right-hand side is compared with the exact
result, showing that this is a reasonably good approximation.16

6.4.2 Variable current density
In the traditional cell configuration, on the right of Figure 6.1, and to a much lesser
extent also in the zero-gap configuration on the left, bubbles increase the ohmic drop

16For ℎ/𝑧c ≪ 1, Eq. (6.12) gives 𝜀
𝜀max = 𝑧

𝑧c . Taking the first order approximation gives ⟨𝜀⟩ = 1
ℎ

∫ ℎ

0
𝑧
𝑧c 𝑑𝑧 =

ℎ/2𝑧c, which is equal to the first order approximation of Eq. (6.14). At higher gas fractions, diving by a
higher value than 2, e.g. ℎ/3𝑧c

1+ℎ/3𝑧c
would give a lower error, but the error would be unacceptably large at

lower gas fractions. The relative error compared to the approximation in Eq. (6.14) with the exact result
over the entire range of gas fractions is acceptable at less than 12%.
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Figure 6.6: Profiles of the normalized current density 𝑗/𝑗0 (solid) and the gas fraction (dashed)
as a function of height 𝑧. Various ratios 𝑙eff/𝑙, between the non-gap-related cell areal resistance
𝑙eff/𝜅m, and the bubble-free areal resistance 𝑙/𝜅m of the gap, are plotted. The higher this ratio,
the larger the height over which the current distribution decreases.

in the electrolyte potential. As bubbles accumulate with height, the impact on the
current density will become larger. Here we will try to quantify this effect.

In the original analysis of Charles W. Tobias [29], the gas velocity 𝑤g was taken to
be constant, no maximum gas fraction was considered, and no other voltage losses
than the ohmic losses in the gap were considered. Here, we make this analysis more
realistic by including these additional effects.

From Eq. (6.1) we find the current density to be given by

𝑗(𝑧) =
𝑉eq −𝑉cell − 𝜂
𝑙/𝜅(𝑧) + 𝑙eff/𝜅m

. (6.15)

The presence of bubbles decreases the gap conductivity 𝜅, which decreases the cur-
rent density. Inserting Eq. (6.15) into Eq. (6.11), using Eq. (6.7), gives

d
d (𝑧/𝑧c)

(
𝜀/𝜀max

1 − 𝜀/𝜀max

)
=
𝑗(𝑧)
𝑗0
. (6.16)

We expect this dimensionless current distribution to decrease with height 𝑧 as the
bubble resistance decreases the current. Equation (6.15) gives 𝑗

𝑗0
=

1+𝑙/𝑙eff
1+𝑙𝜅m/𝑙eff𝜅

. Insert-
ing the Maxwell relation Eq. (6.2) we can solve this for 𝜀 to give

𝜀
1 − 𝜀

=
2
3
𝑗0 − 𝑗
𝑗

(
1 + 𝑙eff

𝑙

)
(6.17)

For 𝜀max = 1 we can insert this into Eq. (6.16) to obtain a separate first-order ordinary
differential equation for 𝑗(𝑧). Solving it, with as a boundary condition a fixed 𝑗0,
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gives
𝑗

𝑗0
=

1√
1 + 3𝑧/𝑧c

1+𝑙eff/𝑙

. (6.18)

This relationship gives that the current 𝑗(𝑧) = 𝑗0/2, so it is halved compared to the
current at 𝑧 = 0, for a height given by 𝑧c

(
1 + 𝑙eff

𝑙

)
, which reduces to 𝑧c in the case of

negligible resistance 𝑙eff ≪ 𝑙. For a constant current density, this is also the height
at which the gas fraction reaches half its maximum. Any additional resistance in
the diaphragm will cause the current density to halve at a larger height. This is also
clearly visible from the graphical depiction in Fig. 6.6.

Inserting Eq. (6.18) into Eq. (6.17) gives the gas fraction profile as a function of
height.17 This exact solution is shown as the dashed lines in Fig. 6.6 and gives a
result very similar to 𝑧

𝑧+𝑧c
of Eq. (6.12), with a maximum relative error below 22

%. Therefore, at least for 𝜀max, this simpler relation can be used to obtain a rough
indication of the gas fraction profile.18

6.5 Natural liquid circulation
High gas fractions can lead to dry zones, called hot-spots, that can become dangerously
hot. To avoid this, Eq. (6.12) shows that 𝑧c should be sufficiently high compared to
the electrolyser height. According to Eq. (6.13) this characteristic height increases
with increasing 𝑙. Therefore, scaling up the electrolyser height also requires more
horizontal space for the gas. Alternatively, Eq. (6.13) shows that 𝑧c also increases with
increasing superficial liquid velocity𝑊l. Using electrolyte convection can, therefore,
help to remove the gas more effectively and allow for more compact electrolysers.
Additionally, liquid flow also helps transport heat out of the cells.

The use of a pump adds additional costs for power use and maintenance. There-
fore, some atmospheric pressure electrolysers use the buoyancy of the rising bubbles
to set the electrolyte into motion. Fig. 6.7 illustrates the operational principle behind
a natural recirculation electrolyser. The rising bubbles drag liquid flow upwards in
what we will call the ‘riser’. This is the bubble-filled space between the diaphragm
and the electrode or behind the electrode in case of a zero-gap electrolyser. After
the bubbles are removed in a gas-liquid separator, the bubble-free electrolyte flows
downwards through a ‘downcomer’ and re-enters the bottom of the electrolyser.

Due to the presence of the bubbles, the liquid column near the electrode will
be lighter than that of the bubble-free downcomer. The hydrostatic pressure in the

17Alternatively, in Appendix 6.B we solve Eqs. (6.16) and (6.15) directly for the gas fraction. The result
is the same and provided in Eq. (6.B.33).

18We note from Eq. (6.18) that the highest height-average current density is obtained when 𝑙 = 0.
Therefore, to maximise the total current, the gap 𝑙 should be made as small as practically possible. This
is indeed what most of the data of Ref. [19] shows. However, for some of the higher current densities,
an optimum gap 𝑙 is observed that is not predicted by our model. This may indicate, for example, the
transition to a slug flow regime or some other effect not incorporated here.
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Figure 6.7: An illustration of the natural liquid recirculation that will arise due to the
buoyancy of the gas evolving from the electrodes. When there is a closed loop where liquid can
recirculate in a downcomer, the difference in weight of the liquid with and without bubbles
will drive a natural circulation pattern.

downcomer is 𝜌l𝑔ℎ, while that in the riser is 𝜌l (1 − ⟨𝜀⟩) 𝑔ℎ, where 𝜌l (1 − ⟨𝜀⟩) is the
average mixture density in the riser. The pressure difference 𝜌l𝑔ℎ⟨𝜀⟩ between the
riser and downcomer will create an upward flow in the riser, which will induce a
frictional pressure drop Δ𝑝f. In a steady-state, the resulting pressure balance reads

𝜌l𝑔ℎ⟨𝜀⟩ = Δ𝑝f. (6.19)

We will write this frictional pressure drop as

∆𝑝f ≈
1
2𝜌𝑊

2
l 𝐾, (6.20)

where we can add 𝐾 =
∑
𝑖 𝐾𝑖 the contributions of various irreversible loss coefficients

due to bends (𝐾 ≈ 1) and contractions (𝐾 ≈ 1.5) to the frictional contribution of the
riser19

𝐾riser = 𝑓
ℎ

𝑙
. (6.21)

For turbulent single-phase flow the coefficients 𝐾 and the friction factor20 𝑓 depend
only weakly on the liquid velocity𝑊l. Using these same values for multi-phase flow
will only be a crude approximation. In general, they will also depend on the gas
fraction and/or the gas velocity𝑊g.

19In case the flow area 𝐴𝑖 of segment 𝑖 differs from the flow area 𝐴⊥ of the riser, we may write

𝐾 =
∑
𝑖

(
𝐴⊥
𝐴𝑖

)2 (
𝐾𝑖 + 𝑓𝑖 ℎ𝑖𝑑𝑖

)
. The hydraulic diameter 𝑑𝑖 = 4𝐴𝑖/𝑃𝑖 with 𝑃𝑖 the perimeter and area of segment

𝑖. For a circular cross-section, this is the diameter, while for two parallel plates, it is the distance 𝑙𝑖 between

them. The prefactor
(
𝐴𝑖
𝐴⊥

)2
corrects the local velocity to𝑊𝑖 =

(
𝐴⊥
𝐴𝑖

)2
𝑊l.

20This is the Darcy friction factor, which is four times the Fanning fraction factor. Inserting Eq. (6.21)
into Eq. (6.20) gives the Darcy-Weisbach equation.



168

The maximum liquid velocity 𝑊l,max arises when the average gas fraction in the
riser is equal to the maximum ⟨𝜀⟩ = 𝜀max. In this case, Eqs. (6.19) and (6.21) combine
to give

𝑊l,max =

√
2𝑔ℎ𝜀max

𝐾
. (6.22)

Note that
√

2𝑔ℎ is the maximum velocity that a free-falling object21 attains when
dropped from a height ℎ.

To make further analytical progress, assume a constant current density and use
the approximation in Eq. (6.14). Together with Eq. (6.13), this reads

⟨𝜀⟩
𝜀max

≈
𝑊g/2𝜀max

𝑤S +𝑊l +𝑊g/2𝜀max
(6.23)

where
𝑊g =

ℎ

𝑙

𝑗Vm

𝑛𝐹
, (6.24)

is the superficial gas flux at the top of the electrolyser at 𝑧 = ℎ.22
From Eqs. (6.19) and (6.20) the superficial liquid velocity squared,𝑊2

l , is propor-
tional to the average gas fraction ⟨𝜀⟩. Therefore, Eq. (6.23) gives

𝑊2
l ≈

2𝑔ℎ𝜀max/𝐾
1 + 2𝜀max

𝑤S+𝑊l
𝑊g

. (6.25)

Here the numerator is the squared maximum superficial liquid velocity of Eq. (6.22),
which is obtained in case the superficial gas velocity 𝑊g far exceeds 𝑤S +𝑊l. The
denominator brings down this maximum velocity when the average fraction in the
riser is not equal to the maximum. This depends on the ratio between the sum of the
upwards velocities 𝑤S +𝑊l and the superficial gas velocity𝑊g.

For 𝐾 independent of 𝑊l, Eq. (6.25) is a cubic equation for 𝑊l that can be solved
analytically. However, this gives a somewhat lengthy expression. Therefore, here,
we consider only its two main limits. Neglecting the Stokes slip velocity23, the limits
of relatively high and low superficial gas velocity read, respectively

𝑊l ≈

𝑊l,max for 𝑊l,max ≪

𝑊g
2𝜀max

,(
𝑊g

𝑔ℎ

𝐾

)1/3
for 𝑊l,max ≫

𝑊g
2𝜀max

.
(6.26)

21This is called Toricelli’s law. Equation (6.22) reminds of the terminal velocity of an object in the
presence of a drag force, with 𝐾 appearing instead of a drag coefficient. The ratio Fr ≡𝑊l/

√
2𝑔ℎ is referred

to as the Froude number, which according to Eq. (6.22) will satisfy Fr ≤
√
𝜀max/𝐾.

22Obtained by integrating Eq. (6.7) from 𝑧 = 0 to 𝑧 = ℎ.
23The cases of dominant superficial gas velocity and liquid velocity are shown in Eq. (6.26). Assuming

the opposite limit of dominant slip velocity 𝑤S ≫
(
𝑊2

l,max
𝑊g

2𝜀max

)1/3
,

𝑊g
2𝜀max

gives 𝑊l ≈
√

𝑊2
l,max
𝑤S

𝑊g
2𝜀max

=√
𝑊g
𝑤S

𝑔ℎ

𝐾
. Depending on the relative magnitude of 𝑊g, 𝑊l,max and 𝑤S, the liquid velocity can scale with

the square root of the current density, the cubic root, or not at all.
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The top limit in Eq. (6.26) is obtained for relatively high superficial gas fluxes𝑊g, so
the maximum gas fraction is obtained. The lower limit in Eq. (6.26) is obtained for
relatively low superficial gas fluxes𝑊g,24 requiring, according to Eq. (6.24), relatively
low current densities 𝑗, heights ℎ, and/or relatively large gaps 𝑙. In this regime, the
superficial liquid velocity increases proportional to

(
𝑗ℎ2/𝐾𝑙

)1/3.
For a typical atmospheric pressure electrolyser we take Vm = 0.06 m3/mol,25, a

height ℎ = 1 m, a gap of 𝑙 = 1 cm, and 𝑗 = 1 A/cm2. Inserting into Eq. (6.24) gives
𝑊g ≈ 0.3 m/s for the hydrogen side (𝑛 = 2). Usually the inlets and outlets of cells
have areas that are much smaller than the riser flow area,26 which can lead to very
large values of 𝐾, see footnote 19. For example, a reduction in flow area by a factor
102 gives 𝐾 ≈ 104, for which the top limit of Eq. (6.26) gives𝑊l ≈ 4 cm/s. This is more
than sufficient to remove the heat and gas from the cell. However, larger stacks or at
higher pressure, the limited recirculation velocity may require the use of a pump.

6.6 Summary
• For a maximum gas fraction 𝜀max = 1, the gas fraction inside the electrolyser

𝜀 =
𝑊g

𝑤S+𝑊l+𝑊g
= 𝑧

𝑧c+𝑧 (6.9), (6.12) increases to 1/2 at a height 𝑧c = 𝑙 𝑤S+𝑊l
𝑗0Vm/𝑛𝐹 (6.13).

A relatively high superficial liquid velocity 𝑊l or Stokes rise velocity 𝑤S can
increase this height, while a higher current density and a smaller gap thickness
𝑙 decrease it.

• In a traditional electrolyser design where the bubbles rise in the inter-electrode
spacing, the current will decrease with height according to 𝑗

𝑗0
= 1√

1+ 3𝑧/𝑧c
1+𝑙eff/𝑙

. For

higher areal resistance 𝑙eff/𝜅m relative to that of the gap 𝑙/𝜅𝑚 , the height at
which the current density halves, increases.

• In a natural recirculation electrolyser the pressure difference between riser and
downcomer is compensated by friction: ⟨𝜀⟩𝜌l𝑔ℎ = Δ𝑝f. Considering only

turbulent friction ∆𝑝f ≈ 1
2𝜌𝑊

2
l 𝐾 (6.20) gives 𝑊l,max =

√
2𝑔ℎ𝜀max

𝐾 (6.22) in case
the maximum gas fraction is reached in the riser.

Exercise 6.1

24The friction in the downcomer circuit, as quantified by 𝐾, should also be small enough to allow the
slip velocity to be neglected with respect to the superficial liquid velocity.

25With 𝑇 = 80◦ C and 𝑝 = 105 Pa, the ideal gas law gives Vm ≈ 0.03 m3/mol, but at such temperatures
the gas bubbles will also contain significant amounts of water vapour, easily doubling the gas volume.

26In a bipolar stack this is required to avoid ‘shunt currents’ that arise when ions skip a number of cells
by travelling out of their cell.
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a. High gas fractions can give rise to hot spots. When problems arise near the
cathode of a water electrolyser when 𝜀 = 𝜀c < 𝜀max, give an expression for the
maximum electrolyser height to stay below this gas fraction You may assume a
constant current density and a half-cell width 𝑙.

b. With 𝑗 = 1 A/cm2, 𝜀max = 0.9, 𝜀max = 1, 𝑙 = 1 cm, and 𝑤S +𝑊l = 1 cm/s, give a
numerical value for this maximum electrolyser height at ambient conditions.

Exercise 6.2

Consider a half-cell of a traditional electrolyser configuration with a gap of thickness
𝑙, an electrolyte conductivity 𝜅m and an approximately constant current density 𝑗.
a. Assuming the tortuosity squared (𝜏2) of the ion path around the bubbles with a

gas fraction 𝜀 is given by 1
1−𝜀 , give an expression for the local ohmic voltage drop

over the gap.
b. When 𝜀 ≈ 𝑧/𝑧c ≪ 1, give an expression for the height-averaged ohmic drop at a

height ℎ to first order in ℎ/𝑧c ≪ 1.
c. Give an expression for only the additional dissipated ohmic power [J/s] as a

consequence of the presence of bubbles for an electrode of area 𝐴.
d. Assuming 𝜀max = 1 and neglecting 𝑤S, Eq. (6.13) gives 𝑧c =

𝑙𝑊l
𝑗V𝑚/𝑛𝐹 . Increasing

the liquid velocity 𝑊l thus increases 𝑧c and decreasing the bubble-associated
ohmic dissipation. However, this goes at the expense of additional pumping
power 𝑄Δ𝑝, with 𝑄 =𝑊l𝐴𝑙/ℎ the volumetric flow-rate. Assume that the Hagen-
Poiseuille equation Δ𝑝 = 12𝜇𝑊l/𝑙2 holds and that Stokes slip is negligible. Give
an expression for the optimal superficial liquid velocity 𝑊l that minimises the
total dissipation.

e. With 𝑗 = 0.3 A/cm2, ℎ = 1 m, 𝑙 = 1 cm, 𝜅m = 100 S/m, and 𝜇 = 1 mPas, give this
optimal velocity for the hydrogen side at ambient conditions.

Exercise 6.3
In the main text, we assumed that the gas fraction depends only on height 𝑧, while it
may also depend on a horizontal coordinate 𝑥 across the cell. Here we consider the
simplest way to model this for a zero-gap electrolyser.
a. If the (constant) current is 𝑗, the number of electrons per gas molecule 𝑛, the gas

molar volume Vm, and Faraday’s constant 𝐹, what is the superficial gas velocity
emanating from the electrode in the 𝑥-direction?

We assume that :
- at 𝑧 = 0 there is no gas,
- the average interstitial gas velocity is a constant 𝑤g,
- the gas fraction is a constant 𝜀 between the electrode at 𝑥 = 0 and 𝑥 = 𝛿,
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- the gas fraction is zero between 𝑥 = 𝛿 and the back wall at 𝑥 = 𝑙.

b. Using conservation of gas volume, give an expression for the bubble plume
thickness 𝛿.

c. Assuming 𝑤g = 0.3 m/s, 𝜀 = 0.2, 𝑗 = 0.2 A/cm2, Vm = 25 l/mol, and 𝑛 = 2, what
will be the plume thickness at a height of 𝑧 = 1 m?

Exercise 6.4
A perforated plate electrode used in gas-evolving electrolysers may be treated as a
porous medium with a tortuosity equal to 1. Its front and back area do not participate
in the reaction; only the electrode area inside the perforations does.
a. If the holes make up a fraction 𝜖 of the electrode area, and these holes contain a

gas fraction 𝜀, what is the ohmic drop if a current density 𝑗, as always per total
unit area, traverses the full thickness 𝐿 of the electrodes when the electrolyte
conductivity is 𝜅?

b. With 𝑏 the Tafel slope of the electrode, what is the Thiele modulus M associated
with this ohmic limitation?

c. If M ≫ 1, by what number is the effectiveness factor multiplied when the gas
fraction increases from 0.3 to 0.6?

d. Give a formula for the overpotential that can be attributed to the presence of
bubbles.

Exercises 6.5-6.17
Fill in the missing steps in the main text, indicated by the symbol .
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Appendices *

6.A Bubble release diameter
As we saw in section 6.3, the gas fraction 𝜀 is determined by how much gas is
produced and how fast it can be removed. This can occur through the flow of
electrolytes but also due to the velocity of the bubbles relative to the liquid. To
determine this buoyant rise velocity, as discussed in section 6.2.2, we have to know
their size. The size distribution of bubbles is very hard to model due to the complex
interactions between bubbles, the bubbles and the electrode, and the electrolyte flow.
In the context of describing boiling, some limited success has been obtained by
considering the force balance. Such types of analysis are complicated because the
exact shape of the bubble at the point of its release must be known to evaluate all the
forces accurately. This can be solved exactly in the special case of single bubbles in
a quiescent liquid on a horizontal surface. Since this can give us an idea of typical
bubble sizes, we will consider this force balance here.

𝜗

𝜗

𝑅

𝑅

ℎ

𝑟

Figure 6.8: A spherical cap bubble on a horizontal surface, showing the contact angle 𝜗.

Consider the approximately spherical cap bubble of Fig. 6.8. The surface tension
force keeping the bubble attached to the surface despite its buoyancy is given by
𝛾 times sin𝜗, times the perimeter of the contact line.27 By solving for the exact
shape of the bubble, it can be shown that at the point of release 3/4 of this force will

27The surface tension potential energy reads U = 𝛾𝜋𝑟2 so that the principle of virtual work gives the
force associated with a change in the bubble radius as 𝜕U/𝜕𝑅 = sin𝜗𝜕U/𝜕𝑟 = 2𝜋𝑟 sin𝜗𝛾.
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be cancelled by the additional Laplace pressure inside the bubble28 so that the net
attractive force reads

𝐹↓ =
𝜋𝑅
2 𝛾 sin2 𝜗. (6.A.27)

The main force away from the surface, 𝐹↑, is that due to buoyancy. We will consider
the contact angle to be small, 𝜗 ≪ 𝜋/2, and approximate the volume of the bubble
by that of a sphere so that, neglecting the gas density,

𝐹↑ =
4𝜌𝑔

3 𝜋𝑅3. (6.A.28)

Equating these forces gives for the bubble release radius 𝑅

𝑅 = 𝜗

√
3𝛾

8𝜌𝑔 . (6.A.29)

This is called the Fritz equation, where we note that 𝜗 is in radians and is assumed to
be small compared to 𝜋/2.29 Using 𝛾 = 73 mN/m and 𝜌 = 103, typical for aqueous
electrolytes, and 𝜗 = 20◦ 𝜋

180 , typical for smooth pure metal surfaces, this gives a
release diameter 2𝑅 = 120 µm. Interactions with other bubbles and flow will usually
tend to decrease this release radius further. Especially hydrogen bubbles in alkaline
electrolytes can be much smaller still.

6.B Dimensionless current distribution
We introduce the dimensionless current density profile 𝑗 = 𝑗/𝑗0, where 𝑗0 =

𝑉eq−𝑉cell−𝜂
𝑙/𝜅+𝑙eff/𝜅m

.
In dimensionless notation, Eq. (6.15) can be written as

𝑗 =
1 + �̄�

1/�̄� + �̄�
, (6.B.30)

where �̄� = 𝑙eff/𝑙 is the diaphragm resistance relative to the bubble-free gap resistance.
Inserting Eq. (6.B.30) in Eq. (6.11) gives, assuming 𝜀max = 1,

d
d�̄�

( 𝜀
1 − 𝜀

)
=

1 + �̄�
1/�̄�(𝜀) + �̄�

. (6.B.31)

28The Laplace pressure is given by Eq. (5.4) as 𝑝l = 2𝛾/𝑅 so that multiplying with the contact area
𝜋𝑟2 = 𝜋𝑅2 sin2 𝜗 gives a repulsive force 2𝜋𝛾𝑅 sin2 𝜗, equal and opposite to the surface tension force.
However, buoyancy will slightly lift the bubble, changing its shape, so one can show that the cancellation
is incomplete.

29For small contact angles we have sin𝜗 ≈ 𝜗. Using degrees instead of radians sometimes 2𝑅 =

0.021𝜗
√

𝛾
𝑔𝜌 can also be found in the literature [25].
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where �̄� ≡ 𝑧/𝑧c. We can solve Eq. (6.B.31) using the Maxwell relation (6.2),30 to give

𝜀 (�̄�) = 1
1 + 3

2(1+�̄�)
(√

1+ 3�̄�
1+�̄�−1

) ≈
{ √

1+3�̄�−1√
1+3�̄�+ 1

2
�̄� = 0,

�̄�
1+�̄� �̄�→∞.

(6.B.32)

For �̄� ≪ 1 the solution approximates to 𝜀 ≈ �̄� ≪ 1, independent of �̄�. This is equal to
the previous result of Eq. (6.12) for constant current density. In dimensional notation,
Eq. (6.B.32) reads

𝜀 (𝑧/𝑧c) =
1

1 + 3
2(1+𝑙eff/𝑙)

(√
1+ 3𝑧/𝑧c

1+𝑙eff/𝑙
−1

) ≈

√

1+3𝑧/𝑧c−1√
1+3𝑧/𝑧c+ 1

2
𝑙eff = 0,

𝑧
𝑧c+𝑧 𝑙eff →∞.

(6.B.33)

In the limit 𝑙eff → ∞, the resistance of the gap can be neglected so the current
density will be independent of the gas fraction in the gap, and we retain the previous
result of Eq. (6.12) for constant current density.

Inserting the solution of Eq. (6.B.33) into Eq. (6.B.30) gives Eq. (6.18), or in dimen-
sionless form

𝑗 =
1√

1 + 3�̄�
1+�̄�

. (6.B.34)

In the limit �̄� ≫ 1 + �̄�, this tends to zero.

6.C An expression for the liquid recirculation velocity
In terms of𝑊l,max defined in Eq. (6.22) we can write

𝑊l ≈

(
𝑊g𝑊

2
l,max/2𝜀max

)1/3

©«1 +
(

𝑤S+𝑊g/2𝜀max(
𝑊g𝑊

2
l,max/2𝜀max

)1/3

)𝑝/2ª®¬
1/𝑝 ≈


𝑊l,max√

1+2𝜀max𝑤S/𝑊g
≪ 𝑤S or 𝑊g

2𝜀max
,(

𝑊g𝑊
2
l,max

2𝜀max

)1/3
≫ 𝑤S and 𝑊g

2𝜀max
.

(6.C.35)

This is nearly identical to the exact result using 𝑝 ≈ 2.6. For 𝑝 = 3 and inserting
Eqs. (6.24) and (6.22):

30The resulting differential equation 1
1+�̄�

(
1+𝜀/2
1−𝜀 + �̄�

)
d

d�̄�
( 𝜀

1−𝜀
)
= 1, with the substitutions �̃� = 𝜀

1−𝜀 and
1
�̄� =

1+𝜀/2
1−𝜀 = 1 + 3

2 �̃�, reads 1+3�̃�/2+�̄�
1+�̄�

d�̃�
d�̄� = 1, so that, with the boundary condition 𝜀(0) = 0, we find∫ �̃�

0

[
1 + 3�̃�

2(1+�̄�)

]
𝑑�̃� = �̃� + 3�̃�2

4(1+�̄�) = �̄�. This quadratic equation is solved by �̃� =
2(1+�̄�)

3

(√
1 + 3�̄�

1+�̄� − 1
)

or

𝜀 = �̃�
1+�̃� given by Eq. (6.B.32).
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𝑊l ≈
(𝑔ℎ/𝐾)

1
3(

1
𝑊g
+

(
𝑤S/𝑊g+1/2𝜀max

(𝑔ℎ/𝐾)
1
3

) 3
2
) 1

3
≈


√

2𝑔ℎ𝜀max/𝐾
1+ 2𝜀max𝑤S 𝑙

ℎ
𝑛𝐹
𝑗Vm

≪ 𝑤S or 𝑊g
2𝜀max

,(
𝑗Vm
𝑛𝐹

𝑔ℎ2

𝐾𝑙

)1/3
≫ 𝑤S and 𝑊g

2𝜀max
.

(6.C.36)

The limits of high gas velocity, high slip velocity, and high liquid velocity can be
written, respectively as:

𝑊l ≈


𝑊l,max 𝑊l,max , 𝑤S ≪

𝑊g
2𝜀max

,√
𝑊2

l,max
𝑤S

𝑊g
2𝜀max

(
𝑊2

l,max
𝑊g

2𝜀max

)1/3
,
𝑊g

2𝜀max
≪ 𝑤S ,(

𝑊2
l,max

𝑊g
2𝜀max

)1/3 𝑤3
S

𝑊2
l,max
≪ 𝑊g

2𝜀max
≪ 𝑊l,max

2𝜀max
.

(6.C.37)



Chapter 7

Redox Flow Batteries

Redox flow batteries are reversible fuel cells or integrated fuel cell-electrolyser combinations.
They typically use liquid electrolytes that flow normal to the current density. To properly
describe the mass transport parallel to the current, coupled to the current distribution parallel
to the flow, inherently requires two-dimensional models. We will take a decoupled approach
where we consider these directions independently. The resulting models will also be useful
for describing fuel cells.
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Figure 7.1: A schematic of a generic redox flow battery where the reactants, oxidant and
reductant, are stored in separate tanks and pumped into the cell that can be operated both
galvanically and electrolytically.
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7.1 Introduction
Redox flow batteries are essentially fuel cells and electrolysers made into one device.
They make use of redox couples that are reversible enough so that, with low activation
overpotentials, they can be both oxidised and reduced. The most commonly used
reaction is with Vanadium due to its stability, relatively low toxicity, and ability to be
used to both anode and cathode, minimising problems with crossover. However, its
high cost, low energy, and power density leave room for the development of different
types of flow batteries.

The two redox couples, with or without additional supporting electrolytes, are
usually stored in two separate tanks, see Fig. 7.1. A pump supplies them to the cell
at the desired rate. Most often, redox flow batteries work with aqueous solutions,
although sometimes non-aqueous solvents, gases, or even suspended solid particles
are used. See section 7.2 for a classification of the various types of flow batteries.

porous electrode

flow-byserpentine

interdigitated

(side views)

flow fields

interdigitated

flow-through

(top views)

parallel

Figure 7.2: The three main flow modes of redox flow batteries are flow-through (top), flow-by
(middle), and interdigitated (bottom). In flow-through cells, there is no flow field, and the
electrolyte flows through the porous electrode. In a flow-by configuration, there is little to
no flow inside the electrodes, and reactants diffuse in. A serpentine flow field may be used
to increase the flow path length. Interdigitated designs combine the advantages of both flow-
through and flow-by properties.

A potential advantage compared to batteries is that the reactants in flow bat-
teries can flow and, therefore, can be conveniently stored in a tank outside of the
electrochemical cell. This decoupling of the power, determined by the cell design,
and the storage capacity, determined by the external tanks, gives additional design
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freedom. It makes redox flow batteries suitable for storing energy for the day-night
cycle variations in electricity supply and demand.

Inside the cell, the reactants are sometimes pumped directly through a porous
electrode, in what is called a flow-through configuration, shown in Fig. 7.2.1 The small
pores in the carbon paper, mesh, or cloth electrode can cause large pressure drops.
Therefore, the middle row of Fig. 7.2 shows the flow-by alternative, in which the flow
passes by the electrode through channels engraved in the current collector/bipolar
plate. In this case, the flow inside the electrode will be very small, and reactants
primarily diffuse towards their reaction sites. If additional channel length is desired,
for example, to ensure that a large fraction of the reactants is converted, a serpentine
flow field forms a suitable alternative to a parallel flow field.

A third option, shown at the bottom of Fig. 7.2, is an interdigitated configuration.
Here, the inlet and outlet channels are not connected, so the electrolyte has to flow
through the electrode to reach the outlet. This gives the same advantage of advective
mass transport as in a flow-through configuration, but with much smaller pressure
drops since the distance over which the fluid travels is much smaller.

7.2 Types of redox flow batteries *
While most commercial systems are based on Vanadium, research on many other
chemistries and cell designs exists. While there may be overlap and combinations
possible, we can distinguish the following broad classification of flow battery types.

• Traditional: this comprises the most common Vanadium-based redox flow
batteries, such as the all-Vanadium type, see Tbl. 7.1, but also, for example, the
Vanadium-Bromine alternative. Vanadium-Oxygen redox flow batteries have
the advantage that air can be used, which does not have to be stored. Also in
this category is the unitised regenerative fuel cell, a H2/O2 fuel cell and water
electrolyser combined in the same device. When one of the reactants is gaseous,
for example in the H2/Br2 flow battery, a gas-breathing electrode is used.

• Hybrid: sometimes, a flow battery half-cell is combined with a normal battery
half-cell. Most commonly, Zinc is used for the battery electrode. Halogens
like Bromine or Iodine are often used for the flow battery electrode. The
energy density of a Zinc-air battery could potentially be similar to that of
Li-ion batteries. Making this type of batteries rechargeable has proven to be
challenging.

• Organic: potentially more eco-friendly and versatile, organic redox couples are
intensively researched. Most types depend on quinones, which have a benzene
ring with an even number of C-H-bonds changed to C=O double bonds.

1In this case, the flow is normal to the current density. Traditionally, the term flow-through electrode
was also used to describe a flow parallel to the current. Contrary to modern flow-battery parlance, which
we will follow here, the term flow-by was sometimes used to refer to flow through a porous electrode
normal to the current density, which is now called flow-through.
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• Semi-solid: To combine battery chemistries with the scalability and storage
advantages of flow batteries, solid battery particles may be put into suspension.
This allows pumping of the battery particles in a suspension-based flow battery.

• Membraneless/microfluidic: Since liquids have relatively low diffusion coeffi-
cients, their laminar concentration boundary layers are relatively thin. In case
of two reactants, by placing the one with the highest density below the one
with a lower density a stably stratified laminar flow can be created. In case
the reactants are miscible in each other, a diffusion boundary layer arises that
can be kept thin with sufficient flow, as schematically illustrated at the top of
Fig. 7.3. The bottom part of this figure shows a case of effective product sep-
aration. Membraneless cells H2/Br2 cells have shown high power densities,
nearing 1 W/cm2.[26].

Name Anode Cathode
all-Vanadium VO2+ + H2O←−→ VO2

+ + 2 H+ + e– V2+ + e– ←−→ V2+

Zinc/Bromine hybrid 2 Br– ←−→ Br2 + 2 e– Zn2+ + 2 e– ←−→ Zn
Iron/Chromium Fe2+ ←−→ Fe3+ + e– Cr3+ + e– ←−→ Cr2+

Hydrogen/Bromine 2 Br– ←−→ Br2 + 2 e– 2 H+ + 2 e– ←−→ H2

Table 7.1: An arbitrary selection of some of the more commonly investigated chemistries for
redox flow batteries.

7.3 Flow-through electrodes
As shown in Fig. 7.2, in the flow-through electrode configuration, there is no separate
flow channel, and the flow goes entirely through the electrodes. This is typically
used to improve the rate of mass transfer. The length scale over which reactants have
to diffuse is reduced to a fraction of a pore size so that the limiting current density
can be relatively high.

As discussed in the introduction and shown in Fig. 7.2, an alternative with lower
pressure drops is the interdigitated design. The analysis given below will approxi-
mately hold in this case when the channel length ℎ is replaced by some characteristic
distance relevant for the flow, of the order of the distance between interdigitated
channels [5].

As argued in section 7.5.1, diffusive transport in the flow direction can usually
be neglected relative to advective transport. For a superficial velocity 𝑊 in the
𝑧-direction, Eqs. (3.15), (3.16) and (3.18) in steady-state combine to give

𝑊
d𝑐
d𝑧 =

𝑎 𝑗⊥
𝑛𝐹

. (7.1)
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Here, we assume that the concentration 𝑐(𝑧) will only be a function of the flow di-
rection 𝑧.2 For an anode, inserting the concentration-dependent Tafel equation (1.28)
𝑗⊥ = 𝑗∗

𝑐
𝑐in

e𝜂/𝑏 , Eq. (7.1) gives

𝑊
d𝑐
d𝑧 = −𝑘𝑎𝑐 where 𝑘 =

𝑗∗e𝜂/𝑏

𝑛𝐹𝑐in
. (7.2)

For a constant reaction rate coefficient 𝑘 = 𝑗⊥/𝑛𝐹𝑐 , the solution of Eq. (7.2) with
boundary condition 𝑐(0) = 𝑐in reads

𝑐(𝑧) = 𝑐ine−
𝑘𝑎
𝑊 𝑧 . (7.3)

So, the reactant concentration decreases exponentially in the flow, as is expected from
a reaction rate that is proportional to the concentration.3

Integrating Eq. (7.1) over 𝑥 over the electrode thickness 𝐿 gives

𝑊𝐿
d𝑐
d𝑧 =

𝑗

𝑛𝐹
(7.4)

where 𝑗 = 𝑎𝐿𝑗⊥, using the conversion factor 𝑎𝐿 introduced in Eq. (3.35). It is solved
by

𝑐(𝑧) = 𝑐in −
∫ 𝑧

0 𝑗d𝑧
𝑛𝐹𝑊𝐿

. (7.5)

For a constant current density 𝑗, this gives the linearly decreasing profile 𝑐(𝑧) =
𝑐in− 𝑗

𝑛𝐹𝑊𝐿 𝑧. In general, the concentration will lie somewhere in between this linearly
decreasing profile and the exponential decrease of Eq. (7.5).

We define the (degree of) conversion as the fraction of inlet concentration that is
converted at the exit:

𝑋 ≡ 𝑐in − 𝑐out
m

𝑐in
= 1 − e−

𝑘𝑎
𝑊 ℎ , (7.6)

where we evaluated Eq. (7.22) at the outlet using ⟨S⟩out = ⟨S⟩ (𝑧 = ℎ). The longer the
channel length ℎ, or the lower the flow velocity ⟨𝑤⟩, the more material converts. Also,
the lower the average overall dimensionless transfer resistance 1/⟨S⟩out the higher the
conversion. This will require the channel and diffusion layers to be sufficiently thin
and the reaction to be sufficiently fast.

Equation 7.6 may be used to determine a suitable channel length ℎ associated
with a desired conversion 𝑋 to give

ℎopt =
𝑊

𝑘𝑎
ln

(
1

1 − 𝑋

)
. (7.7)

2In case there are no ohmic limitations, the electrode effectiveness factor is close to 1, and the reaction
rate will be approximately constant in the transverse 𝑥-direction.

3Note also the similarity with Eq. (7.18), the concentration profile in a flow-by configuration under
limiting current conditions when replacing 𝑘m with 𝑘. The reason is that both mass transfer and the
considered first-order reaction are linear in the concentration.
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A high conversion may be preferable in order to reduce separation costs of the outlet
stream and avoid having to recirculate. However, it is not always desirable. For
example, for an air-fed fuel cell or CO2 electrolyser cathode, a high velocity with
a low conversion may be preferable to maximise the reactant concentration in the
channel. A high reactant concentration minimises the concentration overpotential
and undesirable side reactions. Flowing faster will require a higher compressor duty
or pumping power, which can also be a consideration.

7.4 Optimal electrolyte channel width

𝑙

⟨𝑤⟩

𝑖

𝑖

Figure 7.3: In a membraneless flow battery, laminar electrolyte flow keeps the mixing region
between two reactants (top, in this co-laminar configuration a light blue and heavier orange
reactant mix in the centre) or the developing product boundary layers (bottom) away from the
opposing electrodes. Note that the boundary layers are drawn in an idealised fashion and will
be more spread out in reality.

Usually, the flow channel, as seen from the membrane, is on the other side of
the electrode. In this ‘back-fed’ configuration, the resistance is lower as ions do
not have to traverse the flow channel. A front-fed configuration, in which the flow
channel is on the other side, is also sometimes used. An example are membraneless
or micro-fluidic redox flow batteries. When the flow is fast but still laminar, the
products of the reaction can be transported out with the flow before they diffuse
to the other side of the channel. The laminar boundary layers ensure separation,
so that a membrane is not needed, see Fig. 7.3. Using a thin channel with a high-
conductivity electrolyte, such a configuration can have a similar or lower ohmic drop
compared to a configuration with a membrane without the cost, degradation and
other limitations of membranes. In CO2 electrolysers, a fluid channel between the
cathode and a membrane is often used to supply water and minimise cross-over.

A thinner channel reduces the ohmic losses but increases the pumping losses.
Therefore, there will be a channel width 𝑙 for which the combined losses will be
minimal. Here, we set out to find a relation for this optimal channel width.

For a cell thickness 𝑙𝑦 in the direction normal to the flow and current, the electrode
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area is 𝐴 = ℎ𝑙𝑦 , and the flow channel cross-sectional area reads 𝑙𝑙𝑦 . The power 𝑃res
dissipated by resistance is approximately given by the product of current ⟨𝑗⟩𝐴 and
average potential drop ⟨𝑗⟩𝑙/𝜅, so4

𝑃res
𝐴
≈ ⟨𝑗⟩

2𝑙

𝜅
. (7.8)

The laminar pressure drop is given by the Hagen-Poiseuille equation as5

Δ𝑝 = 12𝜇 ⟨𝑤⟩
𝑙2

ℎ. (7.9)

The power dissipated by friction 𝑃fr in the channel is given by the product of the
volumetric flow-rate 𝑙𝑙𝑦 ⟨𝑤⟩ and so

𝑃fr
𝐴

=
12𝜇⟨𝑤⟩2

𝑙
=

12𝜇⟨𝑗⟩2

(𝑛𝐹𝑋𝑐in)2 𝑙3
, (7.10)

where we used Eqs. (7.15) and (7.6) to write ⟨𝑤⟩ = ⟨𝑗⟩
𝑛𝐹𝑙𝑋𝑐in

.
The optimal gap thickness 𝑙 is that for which the combined power losses 𝑃fr +𝑃res

are minimal. Solving 𝜕
𝜕𝑙

(
𝑃fr
𝐴 +

𝑃res
𝐴

)
= 0 for 𝑙, for constant 𝑋, gives

𝑙opt = (36𝜇𝜅)(1/4)
√

𝑙

𝑛𝐹𝑋𝑐in
. (7.11)

Using typical numbers 𝜇 = 1 mPas and 𝜅 = 1 S/cm gives 𝑙opt = 140 µm
√

𝑙[m]
𝑛𝑐in[M]𝑋 so

that for 𝑙 = 1 m and 𝑋𝑐in = 1 M, the optimal gap is 140 µm wide.

7.5 Flow-by

7.5.1 Quasi-2D model
Figure 7.4 introduces a coordinate system with 𝑧 along the flow and 𝑥 in the per-
pendicular direction, from the flow channel to the catalyst layer or porous electrode.
Sometimes, in the case of gaseous reactants, between the two a diffusion layer exists,
as considered in chapter 5. In the case of liquid reactants, there is often no such
layer.6

4We should actually average the product of the current and potential drop, instead of multiplying their
averages. For not-too-large variations in 𝑗(𝑧), the difference between ⟨𝑗2⟩ and ⟨𝑗⟩2 may be acceptably small
to allow usage of this approximation.

5The derivation of this result proceeds similar to the cylindrical case treated in footnote 11 of chapter 5.
Using the planar Laplacian d2/d𝑥2 gives a prefactor 12 instead of 8.

6In case of a flow-by configuration, the porous electrode is sometimes referred to as a liquid-diffusion
layer. However, on the pore surface the redox reactions take place, contrary to in a gas diffusion layer
(GDL).
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𝒖

𝒋

𝑥
𝒖 𝑐w(𝑧)

𝑥

𝑐(𝑥)
diffusion layer

𝒊

current collector

catalyst layer /
porous electrode

flow channel

𝑧

𝑥

𝑦

Figure 7.4: A schematic of the metal current collector with carved-out flow channels (blue)
in which the reactant concentration decreases along the flow direction (z) as well as in the
direction inside the gas diffusion layer (𝑥), towards the catalyst layer. The first and second
close-ups represent the domains for the channel problem and the membrane-electrode-assembly
(MEA) problem, respectively.

The flow channels can be straight or form, for example, a serpentine flow field
going back and forth many times, as shown in Figure 7.2. A first simplification is
that we do not consider any variation in the 𝑦-direction, which is normal to both
the current and the flow. There will obviously be differences in the concentration
profiles directly below a flow channel or the land area where the current is collected;
see Figure 7.4. Therefore, our model will be some sort of average over this 𝑦-direction.

The distance the fluid travels in the flow direction is typically of the order of
ℎ ∼ 0.1-10 m. However, the flow channels (𝑙 ∼ 1 mm) and porous electrodes (or
diffusion layer with catalyst layer) (∼100 μm) are generally much thinner in the 𝑥-
direction. Therefore, typical diffusive fluxes 𝑁𝑧 ∼ 𝐷𝑐

ℎ
due to the same concentration

difference 𝑐 in the 𝑧-direction are several orders of magnitude smaller than those
𝑁𝑥 ∼ 𝐷𝑐

𝑙
in the 𝑥-direction: 𝑁𝑧

𝑁𝑥
∼ 𝑙

ℎ
≪ 1. So we can usually safely neglect diffusion

parallel to the flow (𝑁𝑧) and take the flux in this direction to be solely due to advection.
In the 𝑥-direction, on the other hand, we will neglect any advection.

Considering advection only in the 𝑧-direction and diffusion only in the 𝑥-direction
allows making separate models for each direction and coupling them afterwards.
Respectively, these two decoupled problems are sometimes referred to [15] as

1. The Channel problem or along-the-channel problem, and

2. The membrane-electrode-assembly or MEA problem.
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In the former we solve for the mean concentration 𝑐m(𝑧), or the wall concentration
𝑐w(𝑧), inside the flow channel as a function of the streamwise coordinate 𝑧. In
the latter problem, we take these profiles as a given and calculate for each 𝑧 the
concentration profile 𝑐(𝑥) throughout the electrode (or diffusion and catalyst layers)
and possibly the membrane. In the following sections, we will subsequently consider
how to model these two problems analytically.

7.5.2 Channel problem
Figure 7.5 introduces again the 𝑥, 𝑧 coordinate system, the channel dimensions (a
streamwise ‘height’ ℎ and channel thickness 𝑙) and flow channel velocity profile
(𝑤(𝑥), with average velocity ⟨𝑤⟩). Neglecting the diffusion term (𝐷 𝜕2𝑐

𝜕𝑧2 ) in the 𝑧-
direction, as discussed in the previous section, the two-dimensional steady-state
advection-diffusion equation (2.3) reads

0 = −𝑤 𝜕𝑐

𝜕𝑧
+ 𝐷 𝜕2𝑐

𝜕𝑥2 . (7.12)

The boundary conditions are: zero flux at the top wall, representing the current
collector at 𝑥 = 𝑙; and a prescribed but yet unknown flux 𝑗

𝑛𝐹 = 𝐷 d𝑐w
d𝑥 at the flow

channel-diffusion layer interface at 𝑥 = 0. The channel problem consists of finding
the concentration 𝑐w = 𝑐(𝑥 = 0). This concentration will provide the connection with,
or input to, the MEA model.

Integrating Eq. (7.12) from 𝑥 = 0 to 𝑥 = 𝑙 gives for the wall flux7

𝑗(𝑧)
𝑛𝐹

= − d
d𝑧

∫ 𝑙

0
𝑤𝑐d𝑥 = −⟨𝑤⟩𝑙d𝑐m

d𝑧 , (7.13)

where the integral
∫ 𝑙

0 𝐷
𝜕2𝑐
𝜕𝑥2 d𝑥 = 𝐷 𝜕𝑐

𝜕𝑥

��
𝑙
− 𝐷 𝜕𝑐

𝜕𝑥

��
0 is evaluated using the boundary con-

ditions shown in Figure 7.5. We defined the cup-mixing concentration as

𝑐m (𝑧) ≡
1
⟨𝑤⟩𝑙

∫ 𝑙

0
𝑤𝑐d𝑥. (7.14)

This represents the average concentration that is obtained when letting liquid at a
position 𝑥 flow into a cup. It weights the concentration with the local velocity, since
faster-flowing liquid provides a larger contribution to what is collected.

Integrating Eq. (7.13) once more, but now in the 𝑧-direction, gives for the average
current density ⟨𝑗⟩ = 1

ℎ

∫ ℎ

0 𝑗d𝑧

⟨𝑗⟩
𝑛𝐹

= ⟨𝑤⟩𝑙 (𝑐in − 𝑐out) . (7.15)

7Here, 𝑛 is the positive number of electrons consumed or generated per molecule of reactant.
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𝑥 𝑤(𝑥)𝑐in

𝜕𝑐/𝜕𝑥 = 0

𝐷 𝜕𝑐w
𝜕𝑥 = 𝑗/𝑛𝐹

⟨𝑤⟩

𝑙

ℎ

𝑐w

𝑐(𝑥, 𝑧)

𝑧

Figure 7.5: A schematic drawing, introducing the (Neumann) boundary conditions at the
two walls and the (Dirichlet) boundary condition 𝑐in at the entrance of the flow channel, its
dimensions (ℎ and velocity profile (𝑤(𝑥), with average velocity ⟨𝑤⟩) in the flow channel.
The channel problem consists of determining the ‘wall’ concentration 𝑐w at the flow channel-
diffusion layer interface at 𝑥 = 0.

Here, 𝑐in and 𝑐out are the cup mixing concentrations, at the inlet at 𝑧 = 0 and at the
outlet 𝑧 = ℎ.8

Using the definition in Eq. (7.17) gives for the molar flux

𝑗

𝑛𝐹
= −𝑙⟨𝑤⟩d𝑐m

d𝑧 = Sh
𝐷 (𝑐m − 𝑐w)

𝑙
. (7.16)

Here, we introduced the Sherwood number Sh, representing the ratio between the flux
𝑁 = 𝑗/𝑛𝐹 and a characteristic diffusion flux 𝐷 𝑐m−𝑐w

𝑙
so that

Sh≡ 𝑁𝑙/𝐷
𝑐m − 𝑐w

. (7.17)

This is a dimensionless number, analogous to the Nusselt number for heat transport.
In terms of the mass transfer coefficient 𝑘m = 𝑁/Δ𝑐 used in chapter 4, we have
Sh = 𝑘m𝑙/𝐷. Near the entrance, the concentration profile is developing so that Sh
will be very large.9

When 𝑐w = 0, the flux cannot be further increased so that a limiting current arises.
In this case, Eq. (7.16) is solved by

𝑐m = 𝑐ine−
⟨Sh⟩𝐷
⟨𝑤⟩𝑙2

𝑧
. (7.18)

Here, ⟨Sh⟩𝐷
⟨𝑤⟩𝑙2 𝑧 =

⟨𝑘m⟩
⟨𝑤⟩𝑙 𝑧 and the running-average Sherwood number ⟨Sh⟩ (𝑧) = 1

𝑧

∫ 𝑧

0 Shd𝑧.
If the Sherwood number is constant, the cup-mixing average concentration 𝑐m de-
creases exponentially over a length scale ⟨𝑤⟩𝑙

2

Sh𝐷 , independent of ℎ. Because the rate

8With 𝑙𝑦 the width in the 𝑦-direction, the number of moles 𝑙𝑙𝑦 ⟨𝑤⟩ (𝑐in − 𝑐m) that leave the channel
equate to ⟨𝑗⟩ ℎ𝑙𝑦/𝑛𝐹, giving Eq. (7.15).

9For a constant velocity ⟨𝑤⟩ this is similar to the Sands solution Sh = 𝑙/𝛿 =
√
𝜋𝑙2/4𝑡𝐷 but with 𝑧/⟨𝑤⟩

instead of 𝑡. Further down the channel, as the concentration profile becomes fully developed, Exercise 7.3
shows that Sh becomes 35/13 ≈ 2.7.
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at which concentration is removed by diffusion is proportional to the concentra-
tion, an exponential decrease results. Therefore, removing the last bit of reactant
concentration from the flow channel becomes increasingly difficult.

To find a general solution to Eq. (7.16), also valid under non-limiting current
conditions, requires an expression for 𝑐w. We know it will be lower than 𝑐m in order
to provide the required diffusion flux towards 𝑥 = 0, see Figures 7.5 and 7.6. Finding
an expression for 𝑐w will be the goal of the MEA problem, which we will consider in
the next section.

𝑧
𝑐w

𝑐in

𝑥

𝑐m

Figure 7.6: An example concentration profile showing that the cup-mixing average concentra-
tion 𝑐m and wall concentration 𝑐w decreases in the streamwise 𝑧-direction. The concentration
profile also decreases towards 𝑥 = 0, where reactants enter the porous electrode or gas diffusion
layer. The wall concentration 𝑐w is always lower than 𝑐m providing the necessary diffusion
flux.

7.5.3 MEA problem
Here, we focus on modelling the porous electrode, or the diffusion and catalyst layer
in case of gaseous reactants. Figure 7.7 depicts these layers as resistances in series,
sandwiched between the flow channel and the membrane. As nothing reacts in the
diffusion layer, the reactant flux from the flow channel can be equated to that over
the diffusion layer and to that entering the catalyst layer. Equation (7.16) is then
extended to

𝑗

𝑛𝐹
= −𝑙⟨𝑤⟩d𝑐m

d𝑧 = Sh
𝐷 (𝑐m − 𝑐w)

𝑙
= Shd

𝐷 (𝑐w − 𝑐r)
𝑙

= k𝑐r = S𝐷𝑐m
𝑙
. (7.19)

Applying Fick’s law 𝑗

𝑛𝐹 = 𝐷d
𝑐w−𝑐r
𝑙d

over the diffusion layer gives

Shd =
𝐷d
𝐷

𝑙

𝑙d
. (7.20)

In the third equation of Eq. (7.19), we assumed a reaction that is first order in the
concentration 𝑐r, with an integral reaction rate coefficient k (see Fig. 7.7).10 As no
reactants leave into the membrane, the flux can be equated to this reaction flux.

10We introduce a new different symbol k = 𝑗/𝑛𝐹𝑐r here, because this rate-constant is an integral value
for an entire reactive layer. Unlike the previously used local rate coefficient 𝑘 = 𝑁⊥/𝑐, it does not multiply
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𝑁 =
𝑗

𝑛𝐹

𝑙d

𝑐w = 𝑐m − 𝑁𝑙
𝐷Sh

𝑐r = 𝑐w − 𝑁𝑙d
𝐷d

𝑐m

Sh−1

Sh−1
d

k−1

Flow channel

Diffusion layer

Catalyst layer /
Porous electrode

Membrane 𝑐r − 𝑁
k

Figure 7.7: A membrane electrode assembly (MEA) consists of from top to bottom: (some-
times) a diffusion layer in which reactants enter from the flow channel (in blue) with a
concentration 𝑐w and leave after a distance 𝑙d to the porous electrode or catalyst layer (below
the dotted line which is entered with a concentration 𝑐r. The membrane is not shown and
would be below this figure.

The final expression of Eq. (7.19) is actually a definition of the overall dimensionless
transfer coefficient S. Since the preceding equations constitute three linear equations
for the three unknowns 𝑐w , 𝑐r, and 𝑐m, these may be solved for 𝑐m to give

1
S =

1
Sh +

1
Shd
+ 𝐷

k𝑙
. (7.21)

The molar flux and concentration differences in Eq. (7.19) are analogous to the current
density and potential differences in Ohm’s law, Eq. 1.8, respectively. The dimension-
less mass transfer resistances 1/Sh and 1/Shd and the reaction resistance 𝐷/k𝑙 then
form a series circuit as shown in Figure 7.8. The combined resistance 1

Sh +
1

Shd
is the

overall resistance to mass transfer. When it is much smaller than k𝑙/𝐷, mass transfer
is ‘limiting’ and provides the dominant resistance. When on the other hand it is
much smaller than k𝑙/𝐷, the process is said to be reaction-limited.

Eq. (7.19) is solved by

𝑐m = 𝑐ine−
⟨S⟩𝐷
⟨𝑤⟩𝑙2

𝑧
, (7.22)

the local concentration 𝑐 but a boundary value 𝑐r and is defined relative to the electrode area rather than
the solid-electrolyte interfacial area.
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where the running-average value ⟨S⟩ (𝑧) = 1
𝑧

∫ 𝑧

0 Sd𝑧. The only difference with
Eq. (7.18) is that the dimensionless mass transfer coefficient for the channel, Sh, is re-
placed by the overall transfer coefficient S, which also includes the transfer resistance
of the diffusion layer, if present, and that of the reaction.11

The current density will decrease as the concentration 𝑐m depletes along the
channel. Using Eq. (7.22), Eq. (7.19) gives the local current density as

𝑗 = 𝑛𝐹S𝐷𝑐in
𝑙

e−
⟨S⟩𝐷
⟨𝑤⟩𝑙2

𝑧
. (7.23)

Upon integrating this, or Eq. (7.19), the channel average flux ⟨𝑗⟩ ≡ 1
ℎ

∫ ℎ

0 𝑗d𝑧 gives
again Eq. (7.15):

⟨𝑗⟩ = 𝑛𝐹⟨𝑤⟩𝑙 (𝑐in − 𝑐m) = 𝑛𝐹⟨𝑤⟩𝑙𝑐in

(
1 − e−

⟨S⟩𝐷
⟨𝑤⟩𝑙2

𝑧
)
, (7.24)

where in the second expression, we inserted Eq. (7.22).

7.5.4 Cell model

membrane

porous electrode

diffusion layer

catalyst layer

flow channel

𝐿

𝐿 −𝜂c0

𝜂a0

Figure 7.8: The potential profiles throughout a cell at a given streamwise coordinate 𝑧.
Reactants diffuse from the cathode flow channel (in blue) through a diffusion layer into the
catalyst layer. In this example, the anode consists of a porous electrode.

Besides its effect on conversion, reactant depletion in the streamwise direction
also impacts the current distribution and energy efficiency, which we will investigate
here. In the case of first-order Tafel kinetics, Eq. (3.B.104) gives

11In the absence of mass-transfer limitations, 𝑆 = k𝑙/𝐷 and, with k = 𝑎𝐿𝑘, Eq. (7.3) is retained upon
replacing 𝑙 with 𝐿. Similar to Eq. (7.7), Eq. (7.22) gives an optimal channel length ℎopt =

⟨𝑤⟩𝑙2
⟨S⟩out𝐷

ln
(

1
1−𝑋

)
.
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𝑗 = E 𝑐r
𝑐in
𝐽∗e𝜂0/𝑏 . (7.25)

Here 𝜂0 = 𝜂𝑎0 > 0, or −𝜂𝑐0 > 0 is the activation overpotential of the electrode
under consideration at the membrane-electrode interface at 𝑥 = 0, see Fig. 7.8.

Adding the second and third expression in Fig. 7.7, and using Eq. (7.21), gives

𝑐r = 𝑐m

(
1 − 𝑗

𝑗lim

)
where 𝑗lim = 𝑛𝐹

1
1

Sh +
1

Shd

𝐷𝑐m
𝑙
. (7.26)

Equations (7.25) and (7.26) combine to give

𝜂0 = 𝑏 ln
©«

𝑗/E 𝐽∗
𝑐m
𝑐in

(
1 − 𝑗

𝑗lim

) ª®®¬. (7.27)

This relation is similar to Eq. (4.27), which we derived for a battery particle. Also in
that case, diffusion and reaction resistances acted in series.

In chapter 3 on porous electrodes, we derived approximate expressions for the
effectiveness factor E in the presence of diffusion limitations or ohmic limitations that
we can insert here.12

In case of no ohmic limitations but strong diffusion limitations, Eq. (3.59) gives for
the effectiveness factor E =

𝑛𝐹𝐷𝑐r
𝑗𝐿 . Inserting in Eq. (7.27) and using Eq. (7.26), gives

𝜂0 ≈ 2𝑏 ln ©«
𝑗/
√
𝐽𝐷 𝐽∗

1 − 𝑗

𝑗lim

ª®¬, (7.28)

where 𝑗𝐷 = 𝑛𝐹𝐷𝑐m/𝐿 is based on the channel cup-mixing concentration. Note
that the entire activation overpotential, including the concentration overpotential

𝑏 ln
(

1
1− 𝑗

𝑗lim

)
, is doubled.

A schematic overview of the potential and overpotential profiles is shown in
Figure 7.8. The flow channel-electrode or flow channel-diffusion layer interface can
be assumed to have a spatially constant electrostatic potential, because it is connected
to a well-conducting current collector, see Fig. 7.4. The constant cell voltage can thus
be taken as the difference between the potentials in the two current collectors. From
Eq. (3.39), we can write the overpotential at the electrode-membrane interface as13

𝜂a0 − 𝜂c0 = 𝑉eq −𝑉cell − 𝑗𝐴𝑅. (7.29)

12Equation (3.67), for combined ohmic and diffusion limitations will not be applicable in case of the
‘back-fed’ electrode considered here, where reactants and ions come from opposite sides, because it was
derived for the case that reactants and ions come from the side. In the case of strong ohmic limitations,
a low effectiveness factor gives a narrow reaction zone on the membrane side of the electrode. This will
add approximately the electrode thickness 𝐿 to 𝑙 to determine the limiting current.

13This is always positive, noting that 𝜂c < 0. Under galvanic conditions 𝑉eq > 𝑉cell > 0 and under
electrolytic conditions 𝑉cell < 𝑉eq < 0.
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We will consider a single porous electrode and neglect the activation overpotential of
the other electrode.14 The overpotential may vary throughout the electrode/catalyst
layer. Therefore, as discussed in the porous electrode chapter 3, the overpotential
value at the interface with the membrane, where the ionic current comes from, should
be used.

Note that since 𝐴𝑅, 𝑉cell and 𝑉eq are constant, Eq. (7.29) implies that, while the
reactant concentration goes down and the concentration potential goes up in the
stream-wise 𝑧-direction, 𝜂 + 𝑗𝐴𝑅 remains constant. This forces the current density
𝑗(𝑧) to go down with increasing 𝑧.

Using Eqs. (7.27) and (7.22) in Eq. (7.29) gives

𝑉cell ≈ 𝑉eq −
(
𝐴𝑅𝑗 + 𝑏 ln

(
𝑗/𝐽∗E

1 − 𝑗/𝑗lim

)
+ ⟨S⟩𝐷⟨𝑤⟩𝑙2 𝑧

)
, (7.30)

where Eqs. (7.25) and (7.21) combine to give for the reaction rate coefficient 𝑘 = 𝑗/𝑛𝐹𝑐r

S =

(
1

Sh +
1

Shd
+ 𝑛𝐹𝐷𝑐in/𝑙

E 𝐽∗e(𝑉eq−𝑉cell−𝑗𝐴𝑅)/𝑏

)−1

. (7.31)

The quasi-two-dimensional cell model of Eq. (7.30) succinctly summarises many
of the concepts we considered in this book. The equilibrium potential𝑉eq and ohmic
losses 𝐴𝑅𝑗, considered in chapter 1. The concentration overpotential 𝑏 ln (𝑐m/𝑐r) =
−𝑏 ln (1 − 𝑗/𝑗lim) studied in chapter 2 is extended in this chapter to include both the
flow channel and diffusion layer, using the series expression of Eq. (7.26). The porous
electrode activation losses 𝑏 ln (𝑗/𝐽∗E) were discussed in chapter 3. The final term
represents a second part of the concentration overpotential 𝑏 ln (𝑐in/𝑐m) and is due
to the decrease in the cup-mixing average concentration 𝑐m with increasing 𝑧. The
approximately exponential decrease in concentration results in a linearly increasing
overpotential.15

Providing you with an understanding of this and similar equations has been a
major aim of this book. In general, this equation has to be solved numerically for 𝑗(𝑧).
Section 7.3 considers the simplest case, in which there are concentration variations
only in the 𝑧-direction.

7.6 Summary
• Due to the large aspect ratio of most flow channels, streamwise diffusion can

be neglected, so that a 1D+1D modelling approach allows solving the along the

14Or assume it can be linearised and included in 𝐴𝑅. Alternatively, in case the anode and cathode
happen to have the same thickness and exchange current density, their Tafel slopes may be added in 𝑏 so
Eq. (7.27) represents the combined activation losses.

15This is similar to the second term in Eq. (4.29), which we derived for a battery particle. Here, a
concentration that linearly decreases in time led to a linearly increasing activation overpotential.
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channel and MEA problems independently. Along the channel, the reactant
cup-mixing concentration decreases, viz. d𝑐m

d𝑧 = −Sh𝐷(𝑐m−𝑐w)
𝑙2⟨𝑤⟩ (7.16) so that 𝑐m =

𝑐ine−
⟨S⟩𝐷
⟨𝑤⟩𝑙2

𝑧 , (7.22), where the dimensionless transfer resistance 1
S=

1
Sh +

1
Shd
+ 𝐷

k𝑙

(7.21) consists of the sum of those in the channel, diffusion layer, and due to the
reaction, respectively.

• Inserting this exponentially decreasing solution into the expression for the
electrode activation overpotential gives, see Eqs. (7.27) and (7.30):

𝜂0 = 𝑏 ln
©«

𝑗/E 𝐽∗
𝑐m
𝑐in

(
1 − 𝑗

𝑗lim

) ª®®¬ = 𝑏 ln ©«
𝑗/𝐽∗E

1 − 𝑗

𝑗lim

ª®¬ + ⟨S⟩𝐷⟨𝑤⟩𝑙2 𝑧, (7.32)

gives a concentration polarisation that linearly increases along the channel.

• For a flow channel in between the electrode and membrane, a larger width
increases the ohmic drop, while a smaller width increases the power dis-
sipated in pumping. At constant conversion, an optimal gap width 𝑙opt =

(36𝜇𝜅)(1/4)
√

𝑙
𝑛𝐹𝑐in𝑋

(7.11) is obtained.

• In a flow-through electrode, neglecting streamwise diffusion, the porous elec-
trode advection-reaction equation𝑊 d𝑐

d𝑧 =
𝑎 𝑗⊥
𝑛𝐹 gives an exponentially decreasing

concentration 𝑐(𝑧) = 𝑐ine− 𝑘𝑎𝑊 𝑧 in case of constant first-order reaction rate coeffi-
cient 𝑘.
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Exercise 7.1
Often in electrolysers and flow batteries it will be beneficial to have a high conversion,
in order to avoid the process of separating the products from the reactants, or reach
a low state of charge in a single pass, respectively.
a. Assuming a constant overall transfer coefficient S = 0.5, what value for the di-

mensionless (Graetz) number ⟨𝑤⟩𝑙
2

ℎ𝐷
gives a conversion of 99 %?

b. What is the ratio between the average current density and the current density
near the inlet in this case?

c. If a flow field is used of length ℎ = 0.1 m and channel thickness 𝑙=1 mm, and the
diffusivity 𝐷 = 2·10−5 m2/s. What flow velocity is required to reach this desired
conversion?

d. What is the conversion that can be reached if a serpentine flow field is used
instead, with 𝑛 turns so that the total channel length becomes 𝑛ℎ. Give your
answer in the form of a formula containing only 𝑛 as a free parameter

Exercise 7.2
Consider a unitised regenerative fuel cell running on hydrogen and air ( 𝑓 = 21 %
oxygen by volume, assume ideal gas behaviour) at 80 ◦C and atmospheric pressure.
The electrode dimensions ℎ and 𝑤 are both 10 cm, giving an area 𝐴 = ℎ𝑤 = 100 cm2.
A current 𝐼 = 100 A is used so that the current density 𝑗 = 𝐼/𝐴 = 1 A/cm2

.. For a 𝑙 =
1 mm wide single cathode flow channel without a flow field, what average inlet air
velocity ⟨𝑤⟩ is minimally required to supply enough oxygen?

Exercise 7.3

a. Assuming 𝜕𝑐
𝜕𝑧 is constant, give the solution 𝑐(𝑥) of Eq. (7.12) for 𝑐(𝑥) for a parabolic

laminar flow profile 𝑤(𝑥) = 6⟨𝑤⟩ 𝑥
𝑙

(
1 − 𝑥

𝑙

)
using the boundary conditions 𝜕𝑐

𝜕𝑥 = 0
at 𝑥 = 𝑙 and 𝑐 = 𝑐w at 𝑥 = 0.

b. Calculate the cup-mixing concentration 𝑐m ≡ 1
⟨𝑤⟩𝑙

∫ 𝑙

0 𝑤𝑐d𝑥 in terms of 𝑐w and 𝜕𝑐
𝜕𝑧 .

c. Assuming 𝜕𝑐
𝜕𝑧 =

𝜕𝑐m
𝜕𝑧 , calculate the Sherwood number from Eq. (7.16).

Exercises 7.4-7.15
Fill in the missing steps in the main text, indicated by the symbol .
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Appendices *

7.A Dimensionless transport equations
The Sherwood number of Eq. (7.A.33) can also be defined as the ratio between
dimensionless flux and dimensionless concentration difference as

Sh ≡ 𝑗𝑙

𝑐m − 𝑐w
, (7.A.33)

where 𝑐 = 𝑐/𝑐in and

𝑗𝑙 =
𝑗

𝐽𝑙
where 𝐽𝑙 = 𝑛𝐹

𝐷𝑐in
𝑙
, (7.A.34)

is relative to the characteristic diffusion driven flux 𝑛𝐹𝐷𝑐in/𝑙. Note that 𝐽𝑙 is similar
to 𝐽D used in porous electrode modelling, except that the length scale used is that
of the flow channel, 𝑙, rather than that of the catalyst layer, 𝐿. Introducing also a
non-dimensional axial coordinate �̄� = 𝑧/ℎ, running from zero at the inlet to 1 at the
outlet, we can write Eq. (7.16) as

Gzd𝑐m
d�̄� = −𝑗𝑙= −Sh (𝑐m − 𝑐w) , (7.A.35)

where the Graetz number
Gz ≡ ⟨𝑤⟩𝑙

2

ℎ𝐷
, (7.A.36)

is similar to the Péclet number16 Pe =
⟨𝑤⟩𝑙
𝐷 , but with a different length scale 𝑙2/ℎ

rather than 𝑙. From Eq. (7.12), the characteristic magnitude of the advection and
diffusion terms are ⟨𝑤⟩𝑐/ℎ and 𝐷𝑐/𝑙2 respectively. The Graetz number provides the
ratio of these two characteristic values. If Gz ≫ 1, advection dominates. If Gz ≪ 1,
transverse diffusion dominates.

Non-dimensionalising all concentrations with 𝑐in, Eq. (7.19) becomes

𝑗𝑙 = Sh (𝑐m − 𝑐w)= Shd (𝑐w − 𝑐r) = k̄𝑐r ≡ S𝑐m , (7.A.37)

16This is in turn similar to the Reynolds number Re =
⟨𝑤⟩𝑙
𝜈 , but with the diffusivity 𝐷 instead of the

kinematic viscosity 𝜈 = 𝜇/𝜌.
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where the dimensionless reaction rate constant is

k̄ =
k

𝐷/𝑙 . (7.A.38)

Using Eq. (7.A.37) in Eq. (7.A.35) gives the dimensionless form of Eq. (7.A.39) as

Gzd𝑐m
d�̄� = −𝑗𝑙 = −S𝑐m. (7.A.39)

This is solved by

𝑐m = e−
⟨S⟩
Gz �̄� . (7.A.40)

Eqs. (7.A.40) and (7.A.39) give the flux at �̄� as

𝑗 = 𝑗𝑙Se−
⟨S⟩
Gz �̄� . (7.A.41)

Upon integration, the channel average flux
〈
𝑗𝑙
〉
≡

∫ 1
0 𝑗𝑙𝑑�̄� reads〈

𝑗𝑙
〉
= Gz

(
1 − 𝑐out

m
)
= Gz

(
1 − e−

⟨S⟩out
Gz

)
. (7.A.42)

This is the dimensionless version of Eq. (7.24). Finally, the conversion in dimension-
less notation reads

𝑋 ≡ 1 − 𝑐out
m = 1 − e−

⟨S⟩out
Gz . (7.A.43)

7.B Dimensionless cell model
With 𝑗/𝑛𝐹 = k𝑐r and Eq. (7.A.38), Eq. (7.25) gives with �̄�0 = |𝜂0 |/𝑏:

k̄ =
E 𝐽∗𝑒 �̄�0

𝐽𝑙
. (7.B.44)

Non-dimensionalising Eq. (7.29) gives, neglecting as in the main text one of overpo-
tentials

�̄�0 = ∆�̄� − 𝑗𝑙 �̄�, (7.B.45)

where �̄� =
𝐴𝑅𝑗𝑙
𝑏

and ∆�̄� ≡ |𝑉eq−𝑉cell |
𝑏

. With Eqs. (7.A.38) and (7.B.44), Eq. (7.21) becomes

1
S=

1
Shtot

+ 1
𝐽∗
𝐽𝑙

e∆�̄�−𝑗𝑙 �̄�
, (7.B.46)

where we define 1
Shtot
≡ 1

Sh +
1

Shd
. This can then be used in Eq. (7.A.39) to give

Gz
d

(
𝑗𝑙/S

)
d�̄� = −𝑗𝑙 . (7.B.47)

In general, this ordinary differential equation has to be solved numerically.



Chapter 8

Additional exercises

Exercise 8.1 constitutes an exercise encompassing knowledge from various chapters.
Exercises 8.2-8.8 constitute a 3-hour closed-book practice exam of 40 points in total.
You may use only the formula sheet. The answers are provided from page 203
onwards. A pass requires a minimum of 22 points.

Exercise 8.1
In this additional exercise we will build up an analytical cell model, including much
of the theory discussed in the various chapters. For definiteness, let’s consider a wa-
ter electrolyser, for making hydrogen. Try initially to answer the questions without
referring to the text. Towards the end of the questions you may have to look up a few
things.
a. Give an expression for the cell voltage as a function of current density 𝑗, consid-

ering only the equilibrium potential 𝑉eq and the area-specific resistance 𝐴𝑅.
b. When the resistance is purely due to the finite conductivity𝜅 of a liquid electrolyte

in a microporous separator with thickness 𝑙 and porosity 𝜖, give an expression
for 𝐴𝑅, assuming Bruggeman’s relation.

c. What term has to be added to the cell voltage model when we include the acti-
vation overpotential of a smooth planar anode (neglecting that of the cathode)
satisfying Tafel kinetics with Tafel slope 𝑏 and exchange current density 𝑗∗?

d. If the same anode material is turned into a porous electrode with volumetric
surface area 𝑎 and thickness 𝐿, what is the effective total exchange current density?

e. If the effectiveness factor of the electrode is E , give an expression for the activation
overpotential.

f. Give an expression for the effectiveness factor E ≪ 1 in terms of the Thiele
modulus M.

g. If the effective electrode conductivity is 𝜅, give an expression for the Thiele
modulus in case of ohmic limitations inside the electrode.
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h. In alkaline water electrolysis, per electron, one hydroxide ion (OH−) is produced
at the cathode and consumed at the anode. Consider two electrodes with a gap
of thickness 𝑑 in between them, in the presence of a large surplus of supporting
electrolyte that does not contain OH−. Give an expression for the limiting current
density due to the finite concentration 𝑐 and diffusivity 𝐷 of OH−.

i. Also give the expression for the limiting current density in the absence of a
supporting electrolyte.

j. The oxygen evolution reaction at the anode is first-order in the OH− concentra-
tion. Assuming Tafel kinetics on a planar electrode, give an expression for the
concentration overpotential in terms of the limiting current density 𝑗lim.

k. Due to the supporting electrolyte, ohmic limitations inside the electrode have
disappeared, while diffusion limitations due to OH− exist. Assuming the con-
centration at the ’entrance’ of the porous electrode is 𝑐, give an expression for
E ≪ 1.

l. Give also the expression for E ≪ 1 in the absence of a supporting electrolyte
when the charge transfer coefficient of the oxidation reaction is 𝛼.

m. Assume that the anode consists of porous particles with small nanopores that
cause the hydroxide diffusivity to decrease to a value𝐷. If the current is switched
on at 𝑡 = 0 and we approximate the resulting concentration profile with a region
of constant concentration gradient, give an expression for the limiting current
density.

n. In a conventional ‘gap electrolyser’ configuration, a flow parallel to the electrodes
in the gap of thickness 𝑑 between anode and cathode is added to remove the heat
of the reaction. When the flowing electrolytes contains a contaminant that reacts
very rapidly at the anode surface, and the Sherwood number can be approximated
by a constant Sh, after what distance is its concentration reduced by a factor
1/𝑒 = 0.368?

o. If the majority of the losses are due to ohmic resistance in the cathodic gap, at
what height do hydrogen bubbles decrease the current density by 1% compared
to that at the bottom? Assume that Bruggeman’s relation holds and that the
liquid velocity can be neglected.
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Exercise 8.2

Air with 𝑓 = 21 vol% oxygen at ambient conditions enters a PEM fuel cell cathode
flow channel of thickness 𝑙 = 1 mm and length ℎ = 0.1 m, sufficiently long to
approximate the channel Sherwood number with a constant value Sh = 2.7. The
hydrophobic diffusion layer between the flow channel and the catalyst layer has a
thickness 𝑙d = 0.6 mm, porosity 𝜖d = 0.8, and squared tortuosity 𝜏2 = 1.7, and can be
assumed to be devoid of water. The molecular diffusion coefficient of oxygen in air
𝐷m = 2 · 10−5 m2/s. The catalyst layer consists of wet agglomerates of approximately
equal and spherical shape, with radius 𝑅 = 10−6 m, and an effective oxygen diffusion
coefficient 𝐷agg = 10−9 m2/s. The concentration of dissolved oxygen will be 𝑐 = 1
mol/m3 at the agglomerate surface. The fuel cell is operated at 1 A/cm2.
a. (3) Neglecting all other transport losses, give a rough approximate value for the

effectiveness factor Ea inside an agglomerate near the diffusion layer.
b. (3) What average air flow velocity ⟨𝑤⟩ in the flow channel will be minimally

required to supply enough oxygen to sustain the cathodic reaction?
c. (5) Assuming ⟨𝑤⟩ is much larger than the value calculated in the previous ques-

tion, give an estimate of the limiting current density 𝑗lim.

8 µm

2 µm

8 µm2 µm

Transport

Exercise 8.3

Consider the medium schematically depicted above. The indicated pattern extends
into all three directions 𝑥, 𝑦, and 𝑧 indefinitely. The transport takes place in the
horizontal direction as indicated by the arrow.
a. (1) Use its definition to give an estimate of the tortuosity of this porous medium

in the indicated transport direction.
b. (1) Calculate the porosity of this material.
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c. (1) Using your values at a) and b), does this medium satisfy Bruggeman’s relation
numerically? Why (not)?

d. (1) In case of transport normal to the indicated transport direction, into the paper,
parallel to the beam-like structure, can a higher, lower, or equal diffusion flux be
obtained with equal concentration gradient and why?

e. (1) Calculate the volumetric surface area 𝑎 of this material.

Exercise 8.4

A special type of membraneless alkaline water electrolyser consists of two parallel
plates, a very small distance 𝑙 = 0.01 mm apart, so that it can operate with low
ohmic losses even at low electrolyte concentrations. Assume an electrolyte with
concentration 𝑐 = 0.1 M, consisting of potassium cations K+with diffusion coefficient
𝐷+ = 2 ·10−9 m2/s and hydroxide anions OH− with diffusion coefficient𝐷− = 5 ·10−9

m2/s. The effects of electrode end-effects, water consumption, flow, and bubbles can
be neglected, so you can consider a one-dimensional concentration profile between
𝑥 = 0 at the anode and 𝑥 = 𝑙 at the cathode. Assume ambient conditions.
a. (5) Give the steady-state electrolyte potential drop Δ𝜙 between the electrodes

when operating at a current density 𝑗, equal to 80 % of the limiting current
density 𝑗lim. Hint: the total amount of electrolyte will remain constant after switching
on the current. Consider what will be the relation between cation concentration and
potential.

b. (4) A monovalent supporting electrolyte, with anion and cation diffusivities both
equal to 10−9 m2/s, is added to give a supporting electrolyte concentration of
1 M. What will be the approximate electrolyte potential drop Δ𝜙 over the gap
between the electrodes at a current density equal to 80 % of the new limiting
current density?

Exercise 8.5

a. (2) Explain under what assumptions the moving reaction zone model and the
single particle model for porous battery electrodes can be used, respectively.
Illustrate your explanation with quantitative criteria in the form of formulas.

Exercise 8.6

Consider a planar anode for a redox reaction, satisfying concentration-independent
Butler-Volmer kinetics with an exchange current density 𝑗∗ and charge transfer coef-
ficient 𝛼.
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a. (1) Under what condition(s) does the activation overpotential 𝜂 increase linearly
with increasing current density? Provide criteria in the form of a formula, or
formulas.

b. (2) Derive an expression for the equivalent area-specific resistance𝐴𝑅 in this case.

Exercise 8.7

Consider a high-pressure zero-gap electrolyser with electrolyte flowing up near the
electrodes due to natural convection of bubbles produced in the reaction, and back
through a downcomer after removal of these bubbles. The laminar flow in between
the electrodes of height ℎ and their respective current collectors at a distance 𝑙 can be
assumed to be laminar and described by the planar Hagen-Poiseuille equation.
a. (4) At very low gas fractions, neglecting bubble slip, and friction in the down-

comer, the superficial liquid recirculation velocity𝑊l near the electrodes increases
proportional to the square root of the current density 𝑗. Why? Use formulas to
explain your answer.

b. (2) Will viscous friction in the downcomer increase or decrease the gas fraction
near the electrodes? Why?

Exercise 8.8

a. (4) Consider a porous anode of volumetric surface area 𝑎 and thickness 𝐿 whose
pores are filled with a supporting electrolyte, giving an effective ionic conduc-
tivity 𝜅. The oxidation reaction under consideration satisfies concentration-
independent Tafel kinetics with a Tafel slope 𝑏 and exchange current density
𝑗∗. Give an approximate equation for the activation overpotential 𝜂0 at the loca-
tion where the ionic current leaves the electrode, as a function of current density
𝑗, including the effect of ohmic limitations. Use it to derive that for high current
densities the effective Tafel slope 𝜕𝜂0

𝜕 ln 𝑗 = 𝑗
𝜕𝜂0
𝜕𝑗 equals 2𝑏. Also explain, in words,

the reason for this Tafel slope doubling.
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Answers to exercises

CHAPTER 1

1.1: 0.3 V

1.2: 𝑉eq−𝜂
2𝐴𝑅

1.3:

a. 𝑏a + 𝑏c

b. 1
1/𝛼a+1/𝛼c

=
𝛼a𝛼c
𝛼a+𝛼c

c. 𝑗𝑏a/𝑏
∗a 𝑗

𝑏c/𝑏
∗c = 𝑗

𝛼/𝛼a
∗a 𝑗

𝛼/𝛼c
∗c

1.4:

a. 7.2 · 103 m2

b. 63 %

CHAPTER 2

2.1:

a. 4
b. 4𝐹 𝐷𝑐𝐿
c. 4𝐹 𝐷𝑐𝐿 𝜖

2.2:

a. 𝐷a
2(1−t+)

b. 𝑗(1−t+)
𝐹𝐷

(
𝐿
2 − 𝑥

)
+ 𝑐

c. 2.1 × 10−10 m2

203
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d. Minutes, yes, 2𝐹𝐷𝑐/𝐿
1−t+

2.3:

a. 𝐷𝑐/𝐿
b. 𝑐0

e𝑢𝑥/𝐷−e𝑢𝐿/𝐷
1−e𝑢𝐿/𝐷

c. 𝑁 = 𝑁0
Pe 𝑒Pe

ePe−1
d. 3.2 · 10−6 m/s

CHAPTER 3

3.1:

a. 0.4
b. 10 µm

3.2: 1.93 A/cm2

3.3:

a. |𝜂| ≪ R𝑇/𝐹
b. R𝑇/𝐹

𝑎𝐿𝑗∗

c. 𝑗 sinh(𝜈(1−𝑥/𝐿))
sinh(𝜈)

d. tanh(𝜈)
𝜈

3.4: 0.18 V

CHAPTER 4

4.1:

a. 12E
b. 600 kW

4.2:

a. 𝑗𝐿

𝜅s

b. 𝑥d =
𝑗𝑡

𝑞

c. Δ𝜙d =
𝑗𝑥d
𝜅d

=
𝑗2𝑡
𝑞𝜅d

d. 𝑉eq − 𝑗𝐿s
𝜅s
− 𝑗2𝑡

𝑞𝜅d
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e. 𝑗𝑉eq𝑡 − 𝑗2𝐿s
𝜅s
𝑡 − 𝑗3

2𝑞𝜅d
𝑡2

f. 𝑉eq𝜅d
𝑗 − 𝐿s

𝜅d
𝜅s

4.3:

a. 0.01 A
b. 75%

CHAPTER 5

5.1:

a. 4𝐹𝐷𝑐𝐿
𝐿

b. 13 A/cm2

c. 𝑘1𝑘2
𝑘1+𝑘2

d. 𝑛𝐹𝑐𝐿
1/𝑘+𝐿/𝐷

5.2:

a. d𝑠
d𝑥 = − 𝜆

𝑝t𝐾

(
𝜇g𝑈g

(1−𝑠)3
+ 𝜇𝑈l

𝑠3

)
b. 1

1+(𝜇gVm,g/2𝜇Vm,l)1/3
≈ 0.36

5.3:

a. 3𝜑/𝑅
b. 0.12 A/cm3

c. 0.49 V
d. 𝑏ln (10)
e. 0.2

CHAPTER 6

6.1:

a. 𝑛𝐹𝑙
𝑗Vm

𝜀c
1−𝜀c/𝜀max

(𝑤S +𝑊l)
b. 0.7 m

6.2:

a. 𝑗𝑙

𝜅m(1−𝜀)2

b. 𝑗𝑙

𝜅m

(
1 + ℎ

𝑧c

)
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c. 𝑗2 𝑙
𝜅m

ℎ
𝑧c
𝐴

d. 𝑗
(

𝑙ℎ2

24𝜇𝜅m
V𝑚
𝑛𝐹

)1/3

e. 2.4 m/s

6.3:

a. 𝑗Vm/𝑛𝐹
b. 𝑗Vm𝑧/𝑛𝐹𝜀𝑤g

c. 4.3 mm

6.4:

a. 𝑗𝐿/𝜅𝜖(1 − 𝜀)
b. 𝑗𝐿/2𝑏𝜅𝜖(1 − 𝜀)
c. 0.57
d. 𝑏 ln

( 1
1−𝜀

)
CHAPTER 7

7.1:

a. 0.11
b. 0.215
c. 0.22 m/s
d. 1 − 0.01𝑁

7.2: 7.6 cm/s

7.3:

a. 𝑐w + ⟨𝑤⟩𝑙
2

ℎ𝐷

( (
𝑥
𝑙

)2 (
1 − 𝑥

2𝑙
)
− 1

)
𝜕𝑐
𝜕�̄�

𝑥
𝑙

b. 35/13 ≈ 2.7

CHAPTER 8

8.2:

a. To a rough approximation we can use Ea ∼ 1
1+𝑗/𝐽𝐷 , where 𝐽𝐷 = 𝑛𝐹𝐷agg𝑐/𝑅. With

𝑛 = 4 electrons per oxygen molecule 𝑗/𝐽𝐷 = 26 so Ea ∼ 0.04.
b. Conservation of oxygen volume gives ⟨𝑤⟩ = 𝑗ℎ/𝑛𝐹𝑙𝑐in. Using the ideal gas law

gives 𝑐in = 𝑓 𝑝/R𝑇 = 8.6 mol/m3 so ⟨𝑤⟩ = 0.3 m/s.
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c. The assumed high velocity makes the channel concentration approximately con-
stant and equal to 𝑐in. Adding the mass transfer resistances of the channel and
diffusion layers in series gives 𝑗lim =

𝑛𝐹𝑐in
𝑙d/𝐷d+𝑙/Sh𝐷m

. Using the effective diffusion
layer diffusivity 𝐷d = 𝐷m𝜖d/𝜏2 ≈ 9.4 · 10−6 m2/s gives 𝑗lim = 4 · 104 A/m2.

8.3:

a. Follow a path through the ‘channels’ in between the solid from left to right until
the pattern repeats. This gives a horizontal distance 𝑙 = 20 µm and a vertical
translation of 5 µm up and 5 µm down so that the total distance covered is 𝑙∥ = 30
µm and 𝜏 = 𝑙∥/𝑙 = 1.5.

b. Considering a repetitive unit cell of cross-sectional area 𝐴 = 100 µm2 around one
solid ‘beam’ of depth 1 m, the cross-sectional pore area 𝐴pore = 8 µm× 4 µm = 32
µm2 + 4 × 1 µm2 = 36 µm2, so that 𝜖 = 𝐴pore/𝐴 = 0.36.

c. Bruggeman’s approximation asserts that 𝜏2 ≈ 𝜖−B with B = 1/2 for a random
arrangement of polydisperse spheres or B = 1 for cylinders. Neither of these
results describes our answers at (a) and (b), which is also not expected. We find
B ≈ 0.8, somewhere in between the result for spheres and cylinders.

d. In the direction parallel to the beam-like structure, the tortuosity 𝜏 = 1 is lower,
giving a higher effective diffusion coefficient, which is proportional to 𝜀/𝜏2.
Therefore, a higher diffusion flux can be obtained with equal concentration gra-
dient.

e. The unit cell considered at (b) has a surface area 𝐴s = 4 × 8 µm × 1 m = 32 · 10−6

m2 and a volume 𝑉 = 𝐴 × 1 m = 1 · 10−10 m3 so 𝑎 = 𝐴s/𝑉 = 3.2 · 105 m−1.

8.4:

a. The immobile cation satisfies 𝑁+ = −𝐷+
(

d𝑐
d𝑥 + 𝑐

𝐹
R𝑇

d𝜙
d𝑥

)
= 0, where 𝜙 is the

electrolyte potential. The concentration thus satisfies a Boltzmann distribution
𝑐 ∝ e 𝐹

R𝑇 𝜙. Therefore, the potential drop Δ𝜙 = R𝑇
𝐹 Δ ln 𝑐 = R𝑇

𝐹 ln 𝑐c
𝑐a

, with 𝑐a and 𝑐c
the electrolyte concentration at the anode and cathode, respectively. Since there
is no reaction between the electrodes, the concentration profile varies linearly in
space. At the limiting current density 𝑐a = 0 at the anode, where the OH− is
consumed. At the catahode, where OH− is produced, 𝑐c = 0.2 M in order to give
the average 𝑐 = 0.1 M. At 80 % of the limiting current density, the concentration
gradient will be 80 % of that at the limiting current density so 𝑐a = 0.02 M and
𝑐c = 0.18 M and Δ𝜙 = 0.02 V.

b. Due to the high supporting electrolyte concentration we use Ohm’s law to write
Δ𝜙 =

𝑗lim 𝑙
𝜅 . The limiting current density reads 𝑗lim =

𝑛𝐹𝐷−Δ𝑐
𝑙

. With 𝑛 = 1 electrons
per OH− and Δ𝑐 = 0.2 M this gives 𝑗lim = 7.7 · 103 A/m2. The conductivity
𝜅 = 𝐹2

R𝑇

∑
𝑧2
𝑖
𝐷𝑖𝑐𝑖 ≈ 7.6 S/m, using 𝑧2

𝑖
= 1 and 𝐷𝑖 = 10−9 m2/s of the supporting

electrolyte. This gives Δ𝜙 ≈ 10−2 V.
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8.5:

The assumption of a thin reaction layer in the moving reaction zone model requires
an effectiveness factor E ≪ 1. Assuming Tafel kinetics, this requires a high current
density 𝑗 ≫ 𝐽𝜅 = 𝜅𝑏/𝐿, where 𝜅 is the effective electrode conductivity, 𝑏 the Tafel
slope, and 𝐿 the electrode thickness.

The single particle model assumes a constant overpotential and reactant concen-
tration throughout the electrode so E ≈ 1. A constant overpotential requires 𝑗 ≪ 𝐽𝜅.
A constant reactant concentration requires 𝑗 ≪ 𝑗𝐷 = 𝑛𝐹𝐷𝑐0/𝐿, where 𝑛 is the num-
ber of electrons per reactant molecule, 𝐷 the effective reactant diffusivity, and 𝑐0
the reactant concentration at the ‘entrance’ of the electrode. For a reacting binary
electrolyte these two criteria are related.

8.6:

a. The exponentials in the concentration-independent Butler-Volmer equation 𝑗⊥ =

𝑗∗
(
e

𝛼𝐹𝜂
R𝑇 − e−

(1−𝛼)𝐹𝜂
R𝑇

)
can be linearized if their arguments 𝛼𝐹𝜂

R𝑇 ,
(1−𝛼)𝐹𝜂

R𝑇 ≪ 1. In this
case 𝑗⊥ becomes proportional to 𝜂.

b. Using the leading-order series expansion e𝑥 ≈ 1 + 𝑥 for 𝑥 ≪ 1 gives 𝑗⊥ ≈ 𝜂/𝐴𝑅
with 𝐴𝑅 = R𝑇

𝑗∗𝐹
.

8.7:

a. Neglecting friction in the downcomer, the hydrostatic pressure difference be-
tween top and bottom 𝜌l𝑔ℎ equals that between the top and bottom of the riser
𝜌l (1 − ⟨𝜀⟩) 𝑔ℎ + 12𝜇𝑊l

𝑙2
so that 𝑊l = 𝜌l⟨𝜀⟩𝑔ℎ𝑙2/12. Neglecting slip, at very low

gas fractions 𝜀 =
𝑊g

𝑤s+𝑊l+𝑊g/𝜀m
≈ 𝑊g

𝑊l
. We thus find that 𝑊l ∝ ⟨𝜀⟩ ∝ 𝑊g/𝑊l so

𝑊l ∝
√
𝑊g ∝

√
𝑗. Because the bubbles escape faster with increasing liquid veloc-

ity, the driving force for natural recirculation is reduced with increasing liquid
flow.

b. Viscous friction in the downcomer decreases 𝑊l. Since 𝜀 ≈ 𝑊g/𝑊l, this will
increase the gas fraction. A lower liquid velocity will transport less gas, increasing
the gas fraction near the electrodes.

8.8:

For concentration-independent Tafel kinetics 𝜂0 = 𝑏 ln
(
𝑗

E 𝐽∗

)
where 𝐽∗ = 𝑎𝑙 𝑗∗ and,

allowing for ohmic limitations, the effectiveness factor E ∼ 1
1+2𝑗/𝐽𝜅 , with 𝐽𝜅 = 𝜅𝑏/𝐿.

Therefore,

𝜂0 ≈


𝑏 ln

(
𝑗

𝐽∗

)
𝑗 ≪ 𝐽𝜅

𝑏 ln
(

𝑗2

2𝐽∗𝐿𝜅𝑏

)
= 2𝑏 ln

(
𝑗√

2𝐽∗𝐿𝜅𝑏

)
𝑗 ≫ 𝐽𝜅

(8.1)
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From these limits we see that the Tafel slope 𝜕𝜂0
𝜕 ln 𝑗 doubles from 𝑏 when 𝑗 ≪ 𝐽𝜅 to 2𝑏

when 𝑗 ≫ 𝐽𝜅.
At high current densities, the effectiveness factor E ≈ 2𝜅𝑏/𝑗𝐿 becomes inversely

proportional to 𝑗 since ohmic resistance makes the activation overpotential 𝜂 decrease
over a penetration-depth inversely proportional to 𝑗. Therefore, the effectively avail-
able reactive surface area, or 𝐽∗E , decreases inversely proportional to 𝑗, causing the
doubling in the Tafel slope.
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Chapter 9

Formula sheet

Constants
Faraday’s constant 𝐹 = 96485 C/mol, Elementary charge 𝑒 = 1.60217662 · 10−19 C,
Gas constant R = 8.314 J/mol/K.

Formulas

𝑗⊥ = 𝑛𝐹𝑁⊥ Faraday’s law (1.19)

𝑗⊥ = 𝑗∗

(
𝑐R
𝑐R,eq

e
𝛼𝑂𝐹𝜂
R𝑇 − 𝑐O

𝑐O,eq
e−

𝛼𝑅𝐹𝜂
R𝑇

)
Butler-Volmer equation (1.27)

𝑉cell = 𝑉eq + 𝜂c − 𝜂a − ∆𝜙 − ∆𝑉 Cell voltage (1.35)

𝑵 𝑖 = 𝑐𝑖𝒖 − 𝐷𝑖

(
∇𝑐𝑖 + 𝑧𝑖𝑐𝑖

𝐹

R𝑇
∇𝜙

)
Nernst-Planck (2.25)

𝜅 =
𝐹2

R𝑇

∑
𝑧2
𝑖𝐷𝑖𝑐𝑖 Ionic conductivity (2.31)

𝐷a ≡ t−𝐷+ + t+𝐷− =
2𝐷+𝐷−
𝐷+ + 𝐷−

Ambipolar diffusivity (2.42)

𝑘m0 =

√
𝜋𝐷
4𝑡 , 𝑘m∞ =

5𝐷
𝑅

Sand’s / developed spherical (2.57)

𝜕𝜖𝑐

𝜕𝑡
= −∇ · 𝑵 + 𝑎𝑁⊥ Conservation equation (3.15)

E ≈ 1
1 + 𝑗/𝐽𝐷 + 𝑗/2𝐽𝜅

Effectiveness factor (3.67)
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⟨𝐶⟩
𝐶max

= e−
∫

𝑎s
1/𝑘+1/𝑘m 𝑑𝑡 SOC single battery particle (4.24)

𝑝c = 𝑝l − 𝑝g =
2𝛾 cos𝜗

𝑟
Laplace (5.5)

−d𝑝l

d𝑥 =
𝜇𝑈l

𝐾𝑘
Darcy (5.11)

d𝑠
d𝑥 = − 𝜆𝜇

𝑝t𝐾

𝑈l
𝑠3 , Water saturation neglecting 𝑝′g (5.13)

𝐹𝐷 = 3𝜋𝜇𝑑
(
𝑤g − 𝑤l

)
Stokes drag force (6.4)

𝜀 =
𝑊g

𝑤S +𝑊l +𝑊g/𝜀m
Bubble gas fraction (6.9)

∆𝑝f =
12𝜇𝑊l

𝑙2
ℎ Planar Hagen-Poiseuille (7.9)

𝜂0 = 𝑏 ln

(
𝑗/E 𝐽∗

𝑐m
𝑐in
(1 − 𝑗/𝑗lim)

)
Activation overpotential (7.27)

The porous electrode equations, associated with the characteristic current densi-
ties 𝐽𝐷 = 𝑛𝐹𝐷𝑐0/𝐿, 𝐽𝜅 = 𝑏𝜅/𝐿, and 𝐽∗ = 𝑎𝐿𝑗∗, respectively

𝑐′ = 𝑖/𝑛𝐹𝐷 (3.44)
𝜂′ = 𝑖/𝜅 (3.45)

𝑖′ = 𝑎 𝑗∗
𝑐

𝑐0
e𝜂/𝑏 (3.46)
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Not in the formula sheet
The above equations represent a selection of what may be considered the most im-
portant formulas of this book. However, there are many relevant equations not given
here, either because they are assumed to be widely known, should be learned by
heart, or can be derived from the above. Here, we will consider these categories in
some detail.

Assumed background knowledge

This category includes, for example, the area (𝜋𝑑2) and volume (𝜋𝑑3/6) of a sphere
of diameter 𝑑, the ideal gas law (𝑝Vm = R𝑇), Ohm’s law (𝒊 = 𝜅𝑬), the buoyancy
force (𝐹b = 𝜌𝑔V) on a volume V , a general conservation equation ( 𝜕𝑐𝜕𝑡 = −∇ · 𝑵 + 𝑆),
an advection-diffusion equation ( 𝜕𝑐𝜕𝑡 + 𝒖 · ∇𝑐 = 𝐷∇2𝑐), and the hydrostatic pressure
𝑝h ≈ (1 − 𝜀)𝜌𝑔ℎ.

Memorise from this course

Things that should be memorised include the conventions and definitions discussed
at the end of the Nomenclature section, or in section 4.1.2, the definition of an
activation overpotential (𝜂 =

(
𝐸 − 𝜙

)
−

(
𝐸 − 𝜙

)
eq), Bruggeman’s relation 𝜏2 ≈ 𝜖−1/2

for spheres and 𝜏2 ≈ 𝜖−1 for cylinders, some relations like 𝛼𝑂+𝛼𝑅 = 1, the definition of
energy/voltage efficiency 𝜑e = 𝑉cell/𝑉eq for Galvanic or 𝜑e = 𝑉eq/𝑉cell for electrolytic
cells, and:

𝒊 =
∑

𝑧𝑖𝐹𝑵 𝑖 Ionic current density (2.28)

𝜂0 = 𝑏ln
(
𝑗

𝐽∗E

)
, Overpotential entrance porous electrode ( 3.42)

E ≈ 1
1 + 𝑗/𝐽𝐷 + 𝑗/2𝐽𝜅

Effectiveness factor (3.67)

𝑁⊥ = 𝑘𝑐r Reaction of order r (1.20)

𝐷 =
𝜖

𝜏2𝐷m Effective transport coefficients (3.11)

𝑎 = (1 − 𝜖) 𝑎s volumetric surface area (3.4)
0 = −∇ · 𝒊 − 𝑎 𝑗⊥ Charge conservation ( 3.19)

Inserting Eq. (3.67) in Eq. (3.42) gives

𝜂0 ≈ 2𝑏ln
©«

𝑗√
𝑎 𝑗∗

1
2𝜅𝑏 +

1
𝑛𝐹𝐷𝑐0

ª®®®®¬
. (3.69)
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The expression for the effectiveness factor can also be derived from the formulas
in the formula sheet,1 but it may be easier to memorise these. In the next paragraph
we will consider a few relations that can be derived from the formula sheet, so do
not necessarily have to be memorised.

Derive from the formula sheet

• From the Nernst-Planck equation (2.25), you can derive the advection-diffusion
flux for neutral particles 𝑵 = 𝒖𝑐 − 𝐷∇𝑐, Ohm’s law 𝒊 = −𝜅∇𝜙, the ionic
conductivity 𝜅 = 𝐹2

R𝑇

∑
𝑧2
𝑖
𝐷𝑖𝑐𝑖 , and the Boltzmann distribution (𝑐 ∝ e−𝑧𝑖𝐹𝜙/R𝑇

for a zero-flux ion 𝑖).

• From Faraday’s and Fick’s law 𝑁⊥ = 𝐷Δ𝑐/𝛿, the limiting current density
𝑗lim = 𝐷Δ𝑐/𝑛𝐹𝛿 follows. From Sand’s equation (2.57) we find the mass transfer
coefficient of a growing boundary layer as 𝑘m ≡ 𝑁⊥/Δ𝑐 = 𝐷/𝛿 =

√
𝜋𝐷/4𝑡,

which is Eq. (4.19).

• The Stokes rise velocity 𝑤S = 𝜌𝑔𝑑2/18𝜇 follows from equating 𝐹b = 𝜌𝑔𝜋𝑑3/6 to
the Stokes drag force, which is valid for 𝜌𝑤S𝑑/𝜇 ≲ 1.

• The state-of-charge of a battery particle 𝑆oC =
⟨𝐶⟩
𝐶max

is provided, including 𝑘m =

𝑁⊥/(𝐶max − ⟨𝐶⟩) for small and large values of time. The first-order reaction
rate coefficient 𝑘 can be obtained as 𝑘 = 𝑁⊥/𝑐 = 𝑗∗e𝜂/𝑏/𝑛𝐹 for concentration-
dependent Tafel kinetics.

• From the Butler-Volmer equation (1.27) you can derive the equations for concentration-
independent Butler-Volmer kinetics 𝑗⊥ = 𝑗∗

(
e

𝛼𝑂𝐹𝜂
R𝑇 − e−

𝛼𝑅𝐹𝜂
R𝑇

)
, symmetric kinetics

𝜂 = 𝑏 asinh
(
𝑗⊥
2𝑗∗

)
, Tafel kinetics 𝑗⊥ = 𝑗∗

𝑐
𝑐0

e𝜂/𝑏 , and concentration-independent

linear kinetics 𝑗⊥ = 𝑗∗𝐹𝜂/R𝑇 2, and the Nernst equation𝑉eq = 𝜙eq+R𝑇
𝐹 ln

(
𝑘𝑂 𝑐R,eq
𝑘𝑅𝑐O,eq

)
.

For concentration-dependent Tafel expressions for the activation and concentration-
overpotential follow as

𝜂 = 𝑏ln
(
𝑗

𝑗∗

𝑐eq

𝑐

)
= 𝑏ln

(
𝑗

𝑗∗

)
+ 𝑏ln

( 𝑐eq

𝑐

)
. (2.10)

1Taking the derivative of the porous electrode equation Eq. (3.B.96) with respect to 𝑥 and inserting
Eq. (3.B.97) gives d2𝑐/d (𝑥/𝐿)2 = M2𝑐 with M2 = 𝐽∗e𝜂/𝑏/𝐽𝐷 which for constant M2 ≫ 1 leads to the
solution 𝑐 = 𝑐0e−M𝑥/𝐿 with effectiveness factor E =

⟨𝑐⟩
𝑐0

= 1
M =

𝐽𝐷
𝑗

using Eq. (3.42). For ohmic limitations

M ≈ 𝑗/2𝐽𝜅 and for a binary electrolyte M = 1+r+𝛼
2

𝑗

𝐽𝐷
.

2Using for small arguments e
𝛼𝑂𝐹𝜂
R𝑇 ≈ 1 + 𝛼𝑂𝐹𝜂

R𝑇
and using 𝛼𝑂 + 𝛼𝑅 = 1.



Index

activation energy, 28
activation overpotential, 27, 31
activity, 26
advection, 45, 66
alkaline water electrolyser, 157
anion exchange membrane (AEM), 56
anions, 23
anode, 22, 23
anode effect, 157
area specific resistance, 21
Arrhenius equation, 28, 50
Avogadro’s number, 24

batteries, 23, 109
alkaline, 109, 110, 112, 123
Lithium-ion, 109, 110, 123, 126
solid-state, 113

binary electrolyte, 54, 123
Boltzmann distribution, 50
Boltzmann factor, see Boltzmann distri-

bution
boundary layer, 48, 56, 59
breakthrough pressure, 140
Brooks-Corey relation, 141
Bruggeman approximation, 83, 86, 144,

160
Butler-Volmer equation, 32

concentration-dependent, 32
concentration-independent, 33
symmetric, 34

capillary, 80, 138
capillary action, 137, 142
capillary pressure, 139
capillary pressure-saturation curve, 140
Carnot efficiency, 26

Cassie-Baxter equation, 137
catalyst

layer, 22
catalyst layer, 134, 137, 183
cathode, 22, 23
cations, 23
charge density, 46, 53
charge transfer coefficient, 34, 41
chlor-alkali process, 158
concentrated solution theory, 66, 123
concentration overpotential, 33, 47
conduction, 20, 52
conductivity, 20, 52
conservation equation, 45
contact angle, 137
Cozeny-Karman relation, 142
current collector, 88
current density, 20, 46, 53, 112
cut-off voltage, 111

Darcy’s law, 142
Darcy-Weisbach equation, 167
Debye length, 32
diffuse layer, 32
diffusion layer, 48, 117
dilute, 51, 52
discharge rate, 112
discharge time, 112
divergence theorem, 46
downcomer, 166
drift velocity, 49, 69

EDL, see electric double layer
effective diffusion coefficient, 82, 144
effectiveness factor, 113, 125, 148, 190
Einstein relation, 51, 52
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Einstein-Smoluchowski equation, 51
electric

charge, 19
field, 19, 23
potential energy, 19

electric double layer, 29, 32, 48, 84
electrical

energy, 23
permittivity, 46

electrical permittivity, 46
electro-osmotic drag, 136
electrode, 22, 23

potential, 26, 84
standard hydrogen, 26

electrodes
pocket, 79
sintered, 79

electrolyser
water electrolyser, 23, 25, 157

electrolyte, 20, 22
binary, 54
supporting, 58
ternary, 75

electrolytic cell, 24
electromotive force, 23
electron acceptor, 23
electron donor, 23
electroneutrality, 46
electrostatic

force, 19
potential, 19

endothermic reaction, 25
energy, 50

activation, 28
efficiency, 24
potential, 19

energy density, 112
energy efficiency, 24
enthalpy, 25

of vaporisation, 25
entropy, 25
equilibrium potential, 44
exchange current density, 32
exothermic reaction, 25

Faraday’s constant, 24
Faraday’s law, 27, 48, 85, 143
Fermi energy, 29
Fick’s law, 45, 136, 187
flooded agglomerate model, 145
flooding, 136, 147
flow channels, 88
flow field, 88
flux, 46
formal potential, 31
friction factor, 167
Fritz equation, 174
Froude number, 168
fuel cell, 23, 133

alkaline (AFC), 133
direct methanol (DMFC), 133
phosphoric acid (PAFC), 132
proton exchange membrane (PEMFC),

132
solid oxide (SOFC), 132

galvanic cell, 24
gas diffusion electrode (GDE), 134
gas diffusion layer, 145
gas diffusion layer (GDL), 134
Gauss’s law, 46
Gauss’s theorem

see divergence theorem 46
Gibbs free energy, 24

Hagen-Poiseuille equation, 141, 183
Hall-Héroult process, 157
heating value

higher, 25
lower, 25

Heyrovski reaction, 42
higher heating value, 25
hot-spots, 166
hydrogen, 26
hydrogen evolution reaction, 25, 42
hydrophobicity, 137
hydroxide, 25

incompressible, 46, 66
intercalation, 111, 116
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interfacial tension, 138
intersitital velocity, 80
interstitial velocity, 80
ion, 20
ion transport number, 53
irreversible loss coefficient, 167

Laplace pressure, 138, 143, 174
limiting current density, 48, 58, 144, 186
linear kinetics, 34
lower heating value, 25

Macmullin number, 82
macro-homogeneous approach, 84
mass transfer coefficient, 119
material derivative, 46
Maxwell effective medium approximation,

160
Membrane Electrode Assembly, 22
migration, 52, 123
mobility, 49, 52, 67
molar volume, 70, 143, 162
moving reaction zone model, 113

Nafion, 135
Navier-Stokes equation, 66, 141
Nernst equation, 31, 44
Nernst layer, 48, 58
Nernst-Einstein equation, see Einstein re-

lation
Nernst-Planck equation, 49
Nernst-Planck flux, 52, 85
non-spontaneous reaction, 26

Ohm’s law, 20, 21, 52, 86, 114
open-circuit voltage, 24
overpotential

activation, 27
concentration, 33, 47, 121
surface, 33

oxidant, 23
oxidation, 23

number, 23
reaction, 29
state, 23

oxidation reaction, 29
oxidiser, 23
oxidising agent, 23
oxygen evolution reaction, 25, 42

P2D model, 122
parabolic polynomial approximation, 129
Parson, 41
permeability, 142
pore-size distribution index, 141
porosity, 77
potential

electrode, 29
equilibrium, 44
formal, 31
thermal, 51

potential energy, 50
Pouillet’s law, 21
proton exchange membrane (PEM), 56,

131, 136
pseudo-2D model, 122

quasi-neutrality, see electroneutrality

radius of curvature, 139
rate constant, 28
rate-determining step, 41, 44
rds, see rate-determining step
reaction

endothermic, 25
exothermic, 25
non-spontaneous, 26
reduction, 29
spontaneous, 26

reaction rate constant, 28
reaction zone battery model, 113
reactions

redox, 22
redox reactions, 22
reducer, 23
reducing agent, 23
reduction, 23
reduction reaction, 29
relative permeability, 142
resistivity, 20
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Reynolds number, 67, 161, 195
riser, 166
roughness factor, 89

saturation, 140
SHE, see standard hydrogen electrode
single particle battery model, 116
slip velocity, 161
SOC, see state of charge
solid diffusion, 116
species, 52
specific energy, 112
spontaneous reaction, 26
standard

conditions, 26
hydrogen electrode, 26

state of charge, 112, 114, 120
Stefan velocity, 66
stoichiometric coefficient

of a reaction, 23, 25
stoichiometric coefficients

of a salt, 54
Stokes drag force, 68, 161
Stokes rise velocity, 161
superficial flux, 82
superficial velocity, 80, 81, 141, 163
supporting electrolyte, 58
surface energy, 138
surface overpotential, 31, 33
surface tension, 138

Tafel equation, 32, 89
Tafel kinetics, 36
Tafel slope, 32, 42
Tafel slope doubling, 96, 125, 149
Tafel slope quadrupling, 149
ternary electrolyte, 75
Theoretical battery capacity, 112
thermal potential, 51
thermoneutral voltage, 25
Thiele modulus, 95, 98, 102, 148, 153, 171
threshold pressure, 140
Toricelli’s law, 168
tortuosity, 77, 78, 80
tortuosity factor, 82

transference number, 71

Udell Leverett-J function, 141

valence, 23
void fraction, 78
Volmer reaction, 42
voltage

cut-off, 111, 114
efficiency, 24
terminal, 112
thermoneutral, 25

voltage efficiency, 24
voltaic cell, see galvanic cell
volumetric surface area, 78

wetting, 137

Young-Laplace equation, 139

zero-gap, 22
zero-gap configuration, 157
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